Ciemny M, Kurcinski M, Kamel K, Kolinski A, Alam N, Schueler-Furman O, Kmiecik S. Protein-peptide docking: opportunities and challenges.
Drug Discov Today 2018;
23:1530-1537. [PMID:
29733895 DOI:
10.1016/j.drudis.2018.05.006]
[Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
Peptides have recently attracted much attention as promising drug candidates. Rational design of peptide-derived therapeutics usually requires structural characterization of the underlying protein-peptide interaction. Given that experimental characterization can be difficult, reliable computational tools are needed. In recent years, a variety of approaches have been developed for 'protein-peptide docking', that is, predicting the structure of the protein-peptide complex, starting from the protein structure and the peptide sequence, including variable degrees of information about the peptide binding site and/or conformation. In this review, we provide an overview of protein-peptide docking methods and outline their capabilities, limitations, and applications in structure-based drug design. Key challenges are also briefly discussed, such as modeling of large-scale conformational changes upon binding, scoring of predicted models, and optimal inclusion of varied types of experimental data and theoretical predictions into an integrative modeling process.
Collapse