1
|
Dos Santos Nascimento IJ, Santos MB, De Jesus Marinho WP, de Moura RO. Insights to Design New Drugs against Human African Trypanosomiasis Targeting Rhodesain using Covalent Docking, Molecular Dynamics Simulations, and MM-PBSA Calculations. Curr Comput Aided Drug Des 2025; 21:67-82. [PMID: 38310575 DOI: 10.2174/0115734099274797231205055827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Neglected tropical diseases (NTDs) are parasitic and bacterial diseases that affect approximately 149 countries, mainly the poor population without basic sanitation. Among these, Human African Trypanosomiasis (HAT), known as sleeping sickness, shows alarming data, with treatment based on suramin and pentamidine in the initial phase and melarsoprol and eflornithine in the chronic phase. Thus, to discover new drugs, several studies point to rhodesain as a promising drug target due to the function of protein degradation and intracellular transport of proteins between the insect and host cells and is present in all cycle phases of the parasite. METHODS Here, based on the previous studies by Nascimento et al. (2021) [5], that show the main rhodesain inhibitors development in the last decade, molecular docking and dynamics were applied in these inhibitors datasets to reveal crucial information that can be into drug design. RESULTS Also, our findings using MD simulations and MM-PBSA calculations confirmed Gly19, Gly23, Gly65, Asp161, and Trp184, showing high binding energy (ΔGbind between -72.782 to -124.477 kJ.mol-1). In addition, Van der Waals interactions have a better contribution (-140,930 to -96,988 kJ.mol-1) than electrostatic forces (-43,270 to -6,854 kJ.mol-1), indicating Van der Waals interactions are the leading forces in forming and maintaining ligand-rhodesain complexes. Thus, conventional and covalent docking was employed and highlighted the presence of Michael acceptors in the ligands in a peptidomimetics scaffold, and interaction with Gly19, Gly23, Gly65, Asp161, and Trp184 is essential to the inhibiting activity. Furthermore, the Dynamic Cross-Correlation Maps (DCCM) show more correlated movements for all complexes than the free rhodesain and strong interactions in the regions of the aforementioned residues. Principal Component Analysis (PCA) demonstrates complex stability corroborating with RMSF and RMSD. CONCLUSION This study can provide valuable insights that can guide researchers worldwide to discover a new promising drug against HAT.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Cesmac University Center, Pharmacy Departament, Maceió, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Mirelly Barbosa Santos
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Washley Phyama De Jesus Marinho
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
2
|
Singh S, Gopi P, Sharma P, Rani MSS, Pandya P, Ali MS. Hemoglobin targeting potential of aminocarb pesticide: Investigation into dynamics, conformational stability, and energetics in solvent environment. Biochem Biophys Res Commun 2024; 736:150896. [PMID: 39471679 DOI: 10.1016/j.bbrc.2024.150896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Aminocarb (AMC), a carbamate pesticide, due to its prevalent usage exhibits increased accumulation in the environment affecting both insects and humans. It enters the human body via food grains and be transported through bloodstream. AMC's chemical structure, containing specific molecular frameworks and functional groups, enables it to bind with proteins like albumin and hemoglobin. Given that molecules with similar architecture are known to bind with hemoglobin, we aimed to explore Aminocarb's binding capability and the potential mechanism or mode of its interaction with hemoglobin. Hb being a tetramer with a profound interface between amino acid chains offers multiple binding sites. It is therefore important to investigate the structural aspects of binding of AMC by employing various spectroscopic and in-silico methods. The surface of the α1 chain near the α1β2 interface emerges as the preferred binding site for AMC, primarily due to its conformational restrictions. In its bound state, AMC tends to maintain a relaxed conformation, closely resembling its globally optimized geometry, and resides in close proximity to the α1 chain via multiple hydrophobic contacts and water bridge as observed in molecular dynamics (MD) simulations. Fluorescence quenching experiments showed moderate binding strength (7.7 × 10⁴ L M⁻1 at 288 K, 7.8 × 10⁴ L M⁻1 at 298 K, 7.9 × 10⁴ L M⁻1 at 308 K) and spontaneous binding, driven by hydrophobic and van der Waals interactions, as indicated by enthalpy (0.80-0.91 kJ mol⁻1), entropy (0.0970-0.0974 kJ mol⁻1), and Gibbs free energy (-27.13 to - 29.08 kJ mol⁻1). Circular dichroism experiments reveal no major structural changes in Hb. Quantum chemical calculations and MD simulations reveal conformation-dependent energy differences, enhancing our understanding of AMC's binding mechanism to Hb.
Collapse
Affiliation(s)
- Shweta Singh
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India; Department of Forensic Science, Kristu Jayanti College, Autonomous, Bengaluru, 560077, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India
| | - Palak Sharma
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India; Department of Forensic Science, Mody University of Science and Technology, Lakshmangarh, Rajasthan, 332311, India
| | - Majji Sai Sudha Rani
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India; School of Sciences, Noida International University, Sector 17A, Uttar Pradesh, 203201, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India.
| | - Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Sarkar P, Gopi P, Pandya P, Paria S, Hossain M, Siddiqui MH, Alamri S, Bhadra K. Insights on the comparative affinity of ribonucleic acids with plant-based beta carboline alkaloid, harmine: Spectroscopic, calorimetric and computational evaluation. Heliyon 2024; 10:e34183. [PMID: 39100473 PMCID: PMC11295990 DOI: 10.1016/j.heliyon.2024.e34183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Small molecules as ligands target multifunctional ribonucleic acids (RNA) for therapeutic engagement. This study explores how the anticancer DNA intercalator harmine interacts various motifs of RNAs, including the single-stranded A-form poly (rA), the clover leaf tRNAphe, and the double-stranded A-form poly (rC)-poly (rG). Harmine showed the affinity to the polynucleotides in the order, poly (rA) > tRNAphe > poly (rC)·poly (rG). While no induced circular dichroism change was detected with poly (rC)poly (rG), significant structural alterations of poly (rA) followed by tRNAphe and occurrence of concurrent initiation of optical activity in the attached achiral molecule of alkaloid was reported. At 25 °C, the affinity further showed exothermic and entropy-driven binding. The interaction also highlighted heat capacity (ΔC o p ) and Gibbs energy contribution from the hydrophobic transfer (ΔG hyd) of binding with harmine. Molecular docking calculations indicated that harmine exhibits higher affinity for poly (rA) compared to tRNAphe and poly (rC)·poly (rG). Subsequent molecular dynamics simulations were conducted to investigate the binding mode and stability of harmine with poly(A), tRNAphe, and poly (rC)·poly (rG). The results revealed that harmine adopts a partial intercalative binding with poly (rA) and tRNAphe, characterized by pronounced stacking forces and stronger binding free energy observed with poly (rA), while a comparatively weaker binding free energy was observed with tRNAphe. In contrast, the stacking forces with poly (rC)·poly (rG) were comparatively less pronounced and adopts a groove binding mode. It was also supported by ferrocyanide quenching analysis. All these findings univocally provide detailed insight into the binding specificity of harmine, to single stranded poly (rA) over other RNA motifs, probably suggesting a self-structure formation in poly (rA) with harmine and its potential as a lead compound for RNA based drug targeting.
Collapse
Affiliation(s)
- Paromita Sarkar
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Samaresh Paria
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Maidul Hossain
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kakali Bhadra
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| |
Collapse
|
4
|
Singh P, Gopi P, Rani MSS, Singh S, Pandya P. Biophysical and structural characterization of tetramethrin serum protein complex and its toxicological implications. J Mol Recognit 2024; 37:e3076. [PMID: 38366770 DOI: 10.1002/jmr.3076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Tetramethrin (TMT) is a commonly used insecticide and has a carcinogenic and neurodegenerative effect on humans. The binding mechanism and toxicological implications of TMT to human serum albumin (HSA) were examined in this study employing a combination of biophysical and computational methods indicating moderate binding affinity and potential hepato and renal toxicity. Fluorescence quenching experiments showed that TMT binds to HSA with a moderate affinity, and the binding process was spontaneous and predominantly enthalpy-driven. Circular dichroism spectroscopy revealed that TMT binding did not induce any significant conformational changes in HSA, resulting in no changes in its alpha-helix content. The binding site and modalities of TMT interactions with HSA as computed by molecular docking and molecular dynamics simulations revealed that it binds to Sudlow site II of HSA via hydrophobic interactions through its dimethylcyclopropane carboxylate methyl propanyl group. The structural dynamics of TMT induce proper fit into the binding site creating increased and stabilizing interactions. Additionally, molecular mechanics-Poisson Boltzmann surface area calculations also indicated that non-polar and van der Waals were found to be the major contributors to the high binding free energy of the complex. Quantum mechanics (QM) revealed the conformational energies of the binding confirmation and the degree of deviation from the global minimum energy conformation of TMT. The results of this study provide a comprehensive understanding of the binding mechanism of TMT with HSA, which is important for evaluating the toxicity of this insecticide in humans.
Collapse
Affiliation(s)
- Pratik Singh
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | | | - Shweta Singh
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| |
Collapse
|
5
|
Shankar M, Rani MSS, Gopi P, P A, Pandya P. Structure and energetics of serum protein complex of tea adulterant dye Bismarck brown Y using experimental and computational methods. Comput Biol Chem 2024; 108:107976. [PMID: 37956472 DOI: 10.1016/j.compbiolchem.2023.107976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Tea, a widely consumed aromatic beverage, is often adulterated with dyes such as Bismarck brown Y (C.I. 21000) (BBY), Prussian blue, and Plumbago, which pose potential health risks. The objective of this study is to analyze how the food dye BBY interacts with serum protein, bovine serum albumin (BSA). This study investigated the BBY-BSA interaction at the molecular level. Fluorescence spectroscopy results showed that the quenching of BSA by BBY is carried out by dynamic quenching mechanism. The displacement assay and molecular docking studies revealed that BBY binds at the flavanone binding site of BSA with hydrophobic interactions. Circular Dichroism results indicate the structural stability of the protein upon BBY binding. Molecular dynamics simulations demonstrated the stability of the complex in a dynamic solvent system, and quantum mechanics calculations showed slight conformational changes of the diaminophenyl ring due to increased hydrophobic interaction. The energetics of gas phase optimized and stable MD structures of BBY indicated similar values which further confirmed that the conformational changes were minor, and it also exhibited a moderate binding with BSA as shown by the MM/PBSA results. This study enhances our understanding of the molecular-level interactions between BBY and BSA, emphasizing the critical role of hydrophobic interactions.
Collapse
Affiliation(s)
- Manwi Shankar
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Majji Sai Sudha Rani
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Arsha P
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
6
|
Sharma B, Sethi B, Raj S, Poddar R, Prasad A, Sharma SR. Exploration of molecular interactions between scoparone and associated compounds with Constitutive androstane receptor (CAR) leading to gallstone prevention: an in silico investigation. J Biomol Struct Dyn 2024; 42:960-976. [PMID: 37096767 DOI: 10.1080/07391102.2023.2198010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/25/2023] [Indexed: 04/26/2023]
Abstract
Scoparone (6, 7 dimethylesculetin) is a biologically active compound derived from the herb Artemisia capillaris having anti-inflammatory, anti-lipemic, and anti-allergic roles. Activation of the constitutive androstane receptor (CAR) in primary hepatocytes of both wild-type and humanized CAR mice by scoparone, accelerates bilirubin and cholesterol clearance in vivo. This can prevent gallstones which is a dreaded gastrointestinal disease. To date, surgery is regarded as the gold standard for treating gallstones. The molecular interactions between scoparone and CAR leading to gallstone prevention are not yet explored. In this study, we have analyzed these interactions through an insilico approach. After extracting the CAR structures (mice and human) from the protein databank and 6, 7-dimethylesuletin from PubChem, energy minimization of both the receptors was done to make them stable followed by docking. Next, a simulation was performed to stabilize the docked complexes. Through docking, H-bonds and pi-pi interactions were found in the complexes, which imply a stable interaction, thus activating the CAR. A similarity search for scoparone was performed and the selected compounds were docked with the CAR receptors. Esculentin acetate and scopoletin acetate interacted with human CAR through pi-alkyl and H-bond respectively. While Fraxidin methyl ether, fraxinol methyl ether, and 6, 7 diethoxycoumarin interacted with mice CAR through H-bond and Pi-Pi T-shaped bonds. The selected complexes were simulated further. Our results are in accordance with the hypothesis in the literature. We have also analyzed the drug likeliness, absorption, non-carcinogenicity, and other properties of scoparone which can support further in vivo studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhavna Sharma
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Bhavya Sethi
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Shashank Raj
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Raju Poddar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Shubha Rani Sharma
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
7
|
Ricaño-Rodríguez J, Ricaño-Rodríguez C, Luis-Yong D, Guzmán-López O. [First evidence of nitrilase enzymatic activity of Xylaria sp. and its relationship with the biosynthesis of indole-3-acetic acid]. Rev Argent Microbiol 2023; 55:214-225. [PMID: 37024343 DOI: 10.1016/j.ram.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 04/07/2023] Open
Abstract
Endophytic fungi inhabit plant tissues internally and asymptomatically, and many of them are involved in the synthesis of bioactive metabolites of antifungal and therapeutic nature, as well as other compounds of biotechnological importance including indole derivatives, among many others. Ecologically, they provide some benefits to plants including protection against phytopathogens and promotion of root growth. In this sense, Xylaria sp. is a cellulose-decomposing fungus with biotechnological potential. It is worth mentioning that indole-3-acetic acid (IAA) also plays an extremely important role in plant-micro-organism interactions, as it is essential for physiology and proper plant morphological development. It is known that nitrile-hydrolytic enzymes (nitrilases) are involved in the synthesis of plant indole compounds; however, relatively little information is available concerning the nature of these enzymes in the fungal kingdom. In view of the above, through a biochemical and molecular-genetic approach, it has been demonstrated for the first time that Xylaria sp. carries out nitrile-hydrolytic enzyme activity using nitrogen and carbon-rich compounds as substrate. The studied strain increased its relative gene expression levels and showed mycelial growth, both in the presence of chemical compounds such as cyanobenzene and KCN. Thus, the results of this work suggest that the micro-organism is capable of degrading complex nitrogenous molecules. On the other hand, through fungal biofertilization, it was observed that Xylaria sp. promotes the development of the root system of Arabidopsis thaliana seedlings, in addition to synthesizing IAA.
Collapse
Affiliation(s)
- Jorge Ricaño-Rodríguez
- Centro de EcoAlfabetización y Diálogo de Saberes, Universidad Veracruzana, Campus USBI, Xalapa, Veracruz, México; Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México.
| | - Celeste Ricaño-Rodríguez
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Daniela Luis-Yong
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Oswaldo Guzmán-López
- Facultad de Ciencias Químicas, Universidad Veracruzana, Coatzacoalcos, Veracruz, México
| |
Collapse
|
8
|
Li LP, Li HX, Zhou H, Li WY, Wang RL, Zhang YC, Ma Y. Exploring the mechanism of C473D mutation on CDC25B causing weak binding affinity with CDK2/CyclinA by molecular dynamics study. J Biomol Struct Dyn 2023; 41:12552-12564. [PMID: 36655391 DOI: 10.1080/07391102.2023.2166995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
CDC25B belongs to the CDC25 family, and it plays an important part in regulating the activity of CDK/CyclinA. Studies have shown that CDC25B is closely related to cancer development. When CYS473 on CDC25B is mutated into ASP, the affinity between CDC25B and CDK2/CyclinA weakens, and their dissociation speed is greatly improved. However, the mechanism by which the CDC25BC473D mutant weakens its binding to CDK2/CyclinA is unclear. In order to study the effect of CDC25BC473D mutants on CDK2/CyclinA substrates, we constructed and verified the rationality of the CDC25BWT:CDK2/CyclinA system and CDC25BC473D:CDK2/CyclinA system and conducted molecular dynamics (MD) simulation analysis. In the post-analysis, the fluctuations of residues ARG488-SER499, LYS541-TRP550 on CDC25B and residues ASP206-ASP210 on CDK2 were massive in the mutant CDC25BC473D:CDK2/CyclinA system. And the interactions between residue ARG492 and residue GLU208, residue ARG544 and residue GLU42, residue ARG544 and TRP550 were weakened in the mutant CDC25BC473D:CDK2/CyclinA system. The results showed that when CYS473 on CDC25B was mutated into ASP473, the mutant CDC25BC473D:CDK2/CyclinA system was less stable than the wild-type CDC25BWT:CDK2/CyclinA system. Finally, active site CYS473 of CDC25B was speculated to be the key residue, which had great effects on the binding between CDC25BCYS473 and CDK2 in the CDC25BC473D:CDK2/CyclinA system. Consequently, overall analyses appeared in this study ultimately provided a useful understanding of the weak interactions between CDC25BCYS473D and CDK2/CyclinA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Li-Peng Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hao-Xin Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hui Zhou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Wei-Ya Li
- China Department of Pharmacy, Tianjin Medical University, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Run-Ling Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ying-Chi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
9
|
Xiong N, Lv PJ, Song JW, Shen Q, Xue YP, Zheng YG. Engineering of a nitrilase through consensus sequence analysis and conserved site substitution to improve its thermostability and activity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Structural Consequence of Non-Synonymous Single-Nucleotide Variants in the N-Terminal Domain of LIS1. Int J Mol Sci 2022; 23:ijms23063109. [PMID: 35328531 PMCID: PMC8955593 DOI: 10.3390/ijms23063109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Disruptive neuronal migration during early brain development causes severe brain malformation. Characterized by mislocalization of cortical neurons, this condition is a result of the loss of function of migration regulating genes. One known neuronal migration disorder is lissencephaly (LIS), which is caused by deletions or mutations of the LIS1 (PAFAH1B1) gene that has been implicated in regulating the microtubule motor protein cytoplasmic dynein. Although this class of diseases has recently received considerable attention, the roles of non-synonymous polymorphisms (nsSNPs) in LIS1 on lissencephaly progression remain elusive. Therefore, the present study employed combined bioinformatics and molecular modeling approach to identify potential damaging nsSNPs in the LIS1 gene and provide atomic insight into their roles in LIS1 loss of function. Using this approach, we identified three high-risk nsSNPs, including rs121434486 (F31S), rs587784254 (W55R), and rs757993270 (W55L) in the LIS1 gene, which are located on the N-terminal domain of LIS1. Molecular dynamics simulation highlighted that all variants decreased helical conformation, increased the intermonomeric distance, and thus disrupted intermonomeric contacts in the LIS1 dimer. Furthermore, the presence of variants also caused a loss of positive electrostatic potential and reduced dimer binding potential. Since self-dimerization is an essential aspect of LIS1 to recruit interacting partners, thus these variants are associated with the loss of LIS1 functions. As a corollary, these findings may further provide critical insights on the roles of LIS1 variants in brain malformation.
Collapse
|
11
|
Li W, Zhang J, Guo L, Wang Q. Importance of Three-Body Problems and Protein-Protein Interactions in Proteolysis-Targeting Chimera Modeling: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:523-532. [PMID: 35084845 DOI: 10.1021/acs.jcim.1c01150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) are a class of bifunctional molecules that can induce the ubiquitin degradation of its target protein by hijacking the E3 ligase to form a target protein-PROTAC-E3 ligase ternary complex. Its underlying principle has inspired the development of a wide range of protein degraders that are similar to or beyond PROTACs in recent years. The formation of the ternary complexes is the key to the success of PROTAC-induced protein degradation. Nevertheless, the lack of effective ternary complex modeling techniques has limited the application of computer-aided drug discovery tools to this emerging and fast developing new land in drug industry. Thus, in this study, we explored the application of the more physically sound molecular dynamics simulation and the molecular mechanics combined with the generalized Born and surface area continuum solvation (MM/GBSA) method to solve the underlying three-body problem in PROTAC modeling. We first verified the accuracy of our approach using a series of known Brd4 BD2 degraders. The calculated binding energy showed a good correlation with the experimental Kd values. The modeling of a unique property, namely, the α value, for PROTACs was also first and accurately performed to our best knowledge. The results also demonstrated the importance of PROTAC-induced protein-protein interactions in its modeling, either qualitatively or quantitatively. Finally, by standing on the success of earlier docking-based approaches, our protocol was also applied as a rescoring function in pose prediction. The results showed a notable improvement in reranking the initial poses generated from a modified Rosetta method, which was reportedly one of the best among a handful of PROTAC modeling approaches available in this field. We hope this work could provide a practical protocol and more insights to study the binding and the design of PROTACs and other protein degraders.
Collapse
Affiliation(s)
- Wenqing Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiabin Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
da Costa CHS, Dos Santos AM, Alves CN, Martí S, Moliner V, Santana K, Lameira J. Assessment of the PETase conformational changes induced by poly(ethylene terephthalate) binding. Proteins 2021; 89:1340-1352. [PMID: 34075621 DOI: 10.1002/prot.26155] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/13/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Recently, a bacterium strain of Ideonella sakaiensis was identified with the uncommon ability to degrade the poly(ethylene terephthalate) (PET). The PETase from I. sakaiensis strain 201-F6 (IsPETase) catalyzes the hydrolysis of PET converting it to mono(2-hydroxyethyl) terephthalic acid (MHET), bis(2-hydroxyethyl)-TPA (BHET), and terephthalic acid (TPA). Despite the potential of this enzyme for mitigation or elimination of environmental contaminants, one of the limitations of the use of IsPETase for PET degradation is the fact that it acts only at moderate temperature due to its low thermal stability. Besides, molecular details of the main interactions of PET in the active site of IsPETase remain unclear. Herein, molecular docking and molecular dynamics (MD) simulations were applied to analyze structural changes of IsPETase induced by PET binding. Results from the essential dynamics revealed that the β1-β2 connecting loop is very flexible. This loop is located far from the active site of IsPETase and we suggest that it can be considered for mutagenesis to increase the thermal stability of IsPETase. The free energy landscape (FEL) demonstrates that the main change in the transition between the unbound to the bound state is associated with the β7-α5 connecting loop, where the catalytic residue Asp206 is located. Overall, the present study provides insights into the molecular binding mechanism of PET into the IsPETase structure and a computational strategy for mapping flexible regions of this enzyme, which can be useful for the engineering of more efficient enzymes for recycling plastic polymers using biological systems.
Collapse
Affiliation(s)
| | - Alberto M Dos Santos
- Centro de Ciências Exatas e Tecnologias, Federal University of Maranhão, São Luis, Maranhão, Brazil
| | - Cláudio Nahum Alves
- Institute of Natural Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Sérgio Martí
- Institute of Advanced Materials (INAM), Universitat Jaume I, Castellón, Spain
| | - Vicent Moliner
- Institute of Advanced Materials (INAM), Universitat Jaume I, Castellón, Spain
| | - Kauê Santana
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Jerônimo Lameira
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
13
|
Rani S, Kumari P, Poddar R, Chattopadhyay S. Study of lipase producing gene in wheat - an in silico approach. J Genet Eng Biotechnol 2021; 19:73. [PMID: 33999287 PMCID: PMC8128969 DOI: 10.1186/s43141-021-00150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Lipases (EC 3.1.1.3) catalyze the hydrolysis of oil into free fatty acids and glycerol forming the 3rd largest group of commercialized enzymes. Plant lipases grab attention recently because of their specificity, less production and purified cost, and easy availability. In silico approach is the first step to identify different genes coding for lipase in a most common indigenous plant, wheat, to explore the possibility of this plant as an alternative source for commercial lipase production. As the hierarchy organization of genes reflects an ancient process of gene duplication and divergence, many of the theoretical and analytical tools of the phylogenetic systematics can be utilized for comparative genomic studies. Also, in addition to experimental identification and characterization of genes, for computational genomic analysis, Arabidopsis has become a popular strategy to identify crop genes which are economically important, as Arabidopsis genes had been well identified and characterized for lipase. A number of articles had been reported in which genes of wheat have shown strong homology with Arabidopsis. The complete genome sequences of rice and Arabidopsis constitute a valuable resource for comparative genome analysis as they are representatives of the two major evolutionary lineages within the angiosperms. Here, in this in silico approach, Arabidopsis and Oryza sativa serve as models for dicotyledonous and monocotyledonous species, respectively, and the genomic sequence data available was used to identify the lipase genes in wheat. RESULTS In this present study, Ensembl Plants database was explored for lipase producing gene present in wheat genome and 21 genes were screened down as they contain specific domain and motif for lipase (GXSXG). According to the evolutionary analysis, it was found that the gene TraesCS5B02G157100, located in 5B chromosome, has 58.35% sequence similarity with the reported lipase gene of Arabidopsis thaliana and gene TraesCS3A02G463500 located in the 3A chromosome has 51.74% sequence similarity with the reported lipase gene of Oryza sativa. Homology modeling was performed using protein sequences coded by aforementioned genes and optimized by molecular dynamic simulations. Further with the help of molecular docking of modeled structures with tributyrin, binding efficiency was checked, and the difference in energies (DE) was -9.83 kcal/mol and -6.67 kcal/mol, respectively. CONCLUSIONS The present work provides a basic understanding of the gene-encoding lipase in wheat, which could be easily accessible and used as a potent industrial enzyme. The study enlightens another direction which can be used further to explore plant lipases.
Collapse
Affiliation(s)
- Shradha Rani
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Priya Kumari
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Raju Poddar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Soham Chattopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
14
|
Exploring the mechanism of the potent allosteric inhibitor compound2 on SHP2 WT and SHP2 F285S by molecular dynamics study. J Mol Graph Model 2020; 103:107807. [PMID: 33338846 DOI: 10.1016/j.jmgm.2020.107807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022]
Abstract
Abnormal activation of Ras/MAPK signaling pathway could trigger excessive cell division. Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2) could promote Ras/MAPK activation by integrating growth factor signals. Thus, SHP2 inhibitors had become a hot topic in the treatment of cancer. SHP2F285S, mutation in SHP2, was detected in leukemia variants. The compound 2 (3-benzyl-8-chloro-2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one) had been reported that it was a potent allosteric inhibitor of both SHP2 wild type (SHP2WT) and the F285S mutant (SHP2F285S). However, the mechanism of inhibition remained to be further discovered. Herein, molecular docking and molecular dynamic (MD) simulation were performed to explain the inhibition mechanism of compound 2 on SHP2WT and SHP2F285S. Overall, the molecular docking analysis revealed that compound 2 maintained the "close" structure of SHP2 protein probably by locking the C-SH2 and PTP domain. Next, post-analysis demonstrated that compound 2 might make TYR66-GLU76 of D'E-loop in N-SH2 and GLU258-LYS266 of B'C-loop, HIS458-ARG465 of P-loop, VAL497-THR507 of Q-loop in PTP domain regions tightly connect and much easier maintain "self-inhibited" conformation of SHP2F285S-compound2 than that of SHP2WT-compound2. Importantly, GLU76 of D'E-loop could play a vital role in inhibition of SHP2WT-compound2 and SHP2F285S-compound2. This work provided a reliable clue to develop novel inhibitors for leukemia related to SHP2F285S.
Collapse
|
15
|
Costa CHSD, Bichara TW, Gomes GC, Dos Santos AM, da Costa KS, Lima AHLE, Alves CN, Lameira J. Unraveling the conformational dynamics of glycerol 3-phosphate dehydrogenase, a nicotinamide adenine dinucleotide-dependent enzyme of Leishmania mexicana. J Biomol Struct Dyn 2020; 39:2044-2055. [PMID: 32174264 DOI: 10.1080/07391102.2020.1742206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Allosteric changes modulate the enzymatic activity, leading to activation or inhibition of the molecular target. Understanding the induced fit accommodation mechanism of a ligand in its lowest-free energy state and the subsequent conformational changes induced in the protein are important questions for drug design. In the present study, molecular dynamics (MD) simulations, binding free energy calculations, and principal component analysis (PCA) were applied to analyze the glycerol-3-phosphate dehydrogenase of Leishmania mexicana (LmGPDH) conformational changes induced by its cofactor and substrate binding. GPDH is a nicotinamide adenine dinucleotide (NAD)-dependent enzyme, which has been reported as an interesting target for drug discovery and development against leishmaniasis. Despite its relevance for glycolysis and pentose phosphate pathways, the structural flexibility and conformational motions of LmGPDH in complex with NADH and dihydroxyacetone phosphate (DHAP) remain unexplored. Here, we analyzed the conformational dynamics of the enzyme-NADH complex (cofactor), and the enzyme-NADH-DHAP complex (adduct), mapped the hydrogen-bond interactions for the complexes and pointed some structural determinants of the enzyme that emerge from these contacts to NADH and DHAP. Finally, we proposed a consistent mechanism for the conformational changes on the first step of the reversible redox conversion of dihydroxyacetone phosphate to glycerol 3-phosphate, indicating key residues and interactions that could be further explored in drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
16
|
da Costa KS, Galúcio JM, da Costa CHS, Santana AR, dos Santos Carvalho V, do Nascimento LD, Lima e Lima AH, Neves Cruz J, Alves CN, Lameira J. Exploring the Potentiality of Natural Products from Essential Oils as Inhibitors of Odorant-Binding Proteins: A Structure- and Ligand-Based Virtual Screening Approach To Find Novel Mosquito Repellents. ACS OMEGA 2019; 4:22475-22486. [PMID: 31909330 PMCID: PMC6941369 DOI: 10.1021/acsomega.9b03157] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 05/31/2023]
Abstract
Odorant-binding proteins (OBPs) are the main olfactory proteins of mosquitoes, and their structures have been widely explored to develop new repellents. In the present study, we combined ligand- and structure-based virtual screening approaches using as a starting point 1633 compounds from 71 botanical families obtained from the Essential Oil Database (EssOilDB). Using as reference the crystallographic structure of N,N-diethyl-meta-toluamide interacting with the OBP1 homodimer of Anopheles gambiae (AgamOBP1), we performed a structural and pharmacophoric similarity search to select potential natural products from the library. Thymol acetate, 4-(4-methyl phenyl)-pentanal, thymyl isovalerate, and p-cymen-8-yl demonstrated a favorable chemical correlation with DEET and also had high-affinity interactions with the OBP binding pocket that molecular dynamics simulations showed to be stable. To the best of our knowledge, this is the first study to evaluate on a large scale the potentiality of NPs from essential oils as inhibitors of the mosquito OBP1 using in silico approaches. Our results could facilitate the design of novel repellents with improved selectivity and affinity to the protein binding pocket and can shed light on the mechanism of action of these compounds against insect olfactory recognition.
Collapse
Affiliation(s)
- Kauȇ Santana da Costa
- Institute
of Biodiversity, Federal University of Western
Pará, 68035-110 Santarém, Pará, Brazil
| | - João Marcos Galúcio
- Institute
of Biodiversity, Federal University of Western
Pará, 68035-110 Santarém, Pará, Brazil
| | | | - Amanda Ruslana Santana
- Department
of Pharmaceutical Sciences, Federal University
of Pará, 66060-902 Belém, Pará, Brazil
| | - Vitor dos Santos Carvalho
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| | | | - Anderson Henrique Lima e Lima
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| | - Jorddy Neves Cruz
- Department
of Pharmaceutical Sciences, Federal University
of Pará, 66060-902 Belém, Pará, Brazil
| | - Claudio Nahum Alves
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| | - Jerônimo Lameira
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| |
Collapse
|