1
|
Binacchi F, Cirri D, Bimbi E, Busto N, Pratesi A, Biver T. Pd(II)/1,10-phenanthroline complexes bearing arene ligands: On the role of N- vs O-coordination to tune their cellular activity and binding ability towards DNA and RNA. J Inorg Biochem 2025; 262:112749. [PMID: 39366102 DOI: 10.1016/j.jinorgbio.2024.112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Three Pd(II)-based complexes of 1,10-phenanthroline and N- or O-coordinating ligands have been synthesised and tested with different relevant biosubstrates like double-stranded DNA, double and triple helix of RNA, DNA G-quadruplexes of different conformations and bovine serum albumin. Here a correlation between N- vs O-coordinating elements and binding mechanism emerged, where the N-coordinating ligands proved to be the most promising. These outcomes were confirmed also in the cellular experiments. The Pd(II) complex with naphthalene-1,8-diamine is the one that is able to be carried by BSA, to strongly bind nucleic acids, to produce reactive oxygen species (ROS) and to show the best cellular performances (poorly toxic towards healthy cells and highly toxic against the cisplatin-resistant cancer cell line). On the opposite, the complex with benzene-1,2-diolate may be sequestered by BSA, weakly binds nucleic acids, does not produce ROS and shows poor cellular activity. The complex with benzene-1,2-diamine stays in between. Other mechanistic details are discussed which show that the biophysical behaviour is the sum of the contribution of aromaticity, charge and N- or O-coordination.
Collapse
Affiliation(s)
- Francesca Binacchi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Eleonora Bimbi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Natalia Busto
- Departamento de Ciencias de la Salud, Universidad de Burgos, Paseo de los Comendadores s/n, 09001 Burgos, Spain.
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Pavlović S, Petrović B, Ćoćić D, Schreurer A, Sretenović S, Nešić MD, Nišavić M, Maric Z, Stanisavljević I, Ćorović I, Simović Marković B, Maric V, Jovanović I, Radić G, Radisavljević S, Jovanović Stević S. New Pd(II)-pincer type complexes as potential antitumor drugs: synthesis, nucleophilic substitution reactions, DNA/HSA interaction, molecular docking study and cytotoxic activity. Dalton Trans 2024; 53:18560-18574. [PMID: 39470017 DOI: 10.1039/d4dt02549k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Two new complexes of Pd(II), [Pd(L1)Cl]Cl (Pd1) and [Pd(L2)Cl]Cl (Pd2), (where L1 = N2,N6-bis(5-methylthiazol-2-yl)pyridine-2,6-dicarboxamide and L2 = N2,N6-di(benzo[d]thiazol-2-yl)pyridine-2.6-dicarboxamide) were synthesized. Characterization of the complexes was performed using elemental analysis, IR, 1H NMR spectroscopy and MALDI-TOF mass spectrometry. The nucleophilic substitution reactions of complexes with L-Methionine (L-Met), L-Cysteine (L-Cys) and guanosine-5'-monophosphate (5'-GMP) were studied by stopped-flow method at physiological conditions (pH = 7.2 and 37 °C). Complex Pd1 was more reactive than Pd2 in all studied reactions, while the order of reactivity of the selected ligands was: L-Met > L-Cys > 5'-GMP. The interaction of complexes with calf thymus-DNA (CT-DNA) was studied by Uv-Vis absorption and fluorescence emission spectroscopy. Competitive binding studies with intercalative agent ethidium bromide (EB) and minor groove binder Hoechst 33258 were performed as well. Both complexes interacted with DNA through intercalation and minor groove binding, where the latter was preferred. Additionally, the interaction of Pd1 and Pd2 complexes with human serum albumin (HSA) was studied employing fluorescence quenching spectroscopy. The results indicate a moderate binding affinity of complexes, with slightly stronger binding of the Pd1. Fluorescence competition experiments with site-markers (eosin Y and ibuprofen) for HSA were used to locate the binding site of Pd1 to the HSA. Additionally, the interaction with DNA and HSA was studied by molecular docking and the revealed results were in good agreement with the experimentally obtained ones. Pd1 complex exhibited cytotoxicity toward human (HCT116) and mouse cell lines (CT26) of colorectal cancer, mouse (4T1) and human (MDA-MB468) breast cancer lines and non-cancerous mouse mesenchymal stem cells (mMSC). In addition, Pd1 complex demonstrated significant selectivity towards cancer cells over non-cancerous mMSC, indicating a high potential to eliminate malignant cells without affecting normal cells. It induced apoptosis in CT26 cells, effectively arrested the cell cycle in the S phase, and selectively down-regulated cyclin D and cyclin E. Moreover, it can alter the expression of cell cycle regulators by increasing p21 and decreasing p-AKT. These findings confirm its ability to disrupt key tumor cell survival signals and suggest that the Pd1 complex is a potent candidate for effective cancer treatment.
Collapse
Affiliation(s)
- Sladjana Pavlović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Biljana Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Dušan Ćoćić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Andreas Schreurer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Snežana Sretenović
- University of Kragujevac, Faculty of Medicinal Science, Department of Internal Medicine, Kragujevac, Serbia
| | - Maja D Nešić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000, Serbia
| | - Marija Nišavić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000, Serbia
| | - Zorana Maric
- University of East Sarajevo, Faculty of Medicine, Studentska 5, 73300 Foca, BiH
| | - Isidora Stanisavljević
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irfan Ćorović
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Bojana Simović Marković
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Veljko Maric
- University of East Sarajevo, Faculty of Medicine, Studentska 5, 73300 Foca, BiH
| | - Ivan Jovanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Gordana Radić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia.
| | - Snežana Radisavljević
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Snežana Jovanović Stević
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia.
| |
Collapse
|
3
|
Jamshidian N, Hajiaghasi A, Amirghofran Z, Karami A, Karami K. New anthracene-based Oxime-Palladium complexes loaded on albumin nanoparticles, in vitro cytotoxicity, mathematical release mechanism studies and biological macromolecules interaction investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123513. [PMID: 37864973 DOI: 10.1016/j.saa.2023.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
In this research work, two new palladium complexes [trans-Pd(C15H10NOCH3)2]Cl2 (1) and [cis- Pd(C15H10NOCH3)(PPh3)2Cl]Cl (2) were synthesized using an alkoxyme ligand named isophethalaldoxime. Then structure characterization has been done by FT-IR and different NMR (1H, 13C and 31P) spectroscopy. Then, their interactions with biological macromolecules including deoxyribonucleic acid and bovine serum albumin were studied using various spectroscopic methods such as UV-Vis absorption, fluorescence emission spectroscopy and circular dichroism. The results showed the binding of the prepared complexes to the deoxyribonucleic acid via grooves and different binding sites of bovine serum albumin. Fluorescence emission data showed that the mechanism of extinction of albumin emission by these compounds is static. Competitive titration was performed on albumin with eosin-Y, ibuprofen and digoxin as site markers I, II and III. The antitumor activity and toxicity of these compounds were evaluated on cancer cell lines A549 (leukemia) and K562 by in-vitro cytotoxicity test. The IC50 values showed the good activity of these complexes in inhibiting cancer cells. In the last section, the release mechanism of synthesized complexes from albumin nanoparticles (BNPs) was investigated and theoretical calculations were performed that showed Korsmeyer-Peppas mechanism for complex (1) and Quadratic mechanism for complex (2).
Collapse
Affiliation(s)
- Nasrin Jamshidian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran
| | - Afsaneh Hajiaghasi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran
| | - Zahra Amirghofran
- Immunology Department and Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Karami
- Medical school, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kazem Karami
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran.
| |
Collapse
|
4
|
Mandal S, Pan A, Bhaduri R, Tarai SK, Kapoor BS, Moi SC. Theoretical investigation on hydrolysis mechanism of cis-platin analogous Pt(II)/Pd(II) complex by DFT calculation and molecular docking approach for their interaction with DNA & HSA. J Mol Graph Model 2022; 117:108314. [PMID: 36041352 DOI: 10.1016/j.jmgm.2022.108314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023]
Abstract
The properties to be an active drug candidate of the complex Pt(TEEDA)Cl2, C1; Pd(TEEDA)Cl2, C2 and their hydrolysed product [Pt(TEEDA)(OH2)2]2+, C1' and [Pd(TEEDA)(OH2)2]2+, C2' were predicted by Lipinski's rule of 5 and PASS (prediction of activity spectra for substances) web tool. Their structural profile, HOMO-LUMO energy and electronic potential surface ware analysed by DFT calculation. Their TD-DFT spectra were compared with experimental UV-Vis spectra. The hydrolysis mechanisms of C1 & C2 to the diaqua form C1' and C2' were extensively investigated by DFT method in different levels of theory and using CPCM/water model and compared with recognised Pt based anticancer drugs. All the stationary states, including the transition state for the reactions were identified by the DFT calculation. The IRC calculation confirmed that the transition states are well connected and corelate with reactants and products. Interaction of the complexes with DNA & HSA was also investigated by molecular docking study.
Collapse
Affiliation(s)
- Saikat Mandal
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur, 713209, West Bengal, India
| | - Angana Pan
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur, 713209, West Bengal, India
| | - Rituparna Bhaduri
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur, 713209, West Bengal, India
| | - Swarup Kumar Tarai
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur, 713209, West Bengal, India
| | - Bishwajit Singh Kapoor
- Department of Biotechnology, National Institute of Technology Durgapur, M. G. Avenue, Durgapur, 713209, West Bengal, India
| | - Sankar Chandra Moi
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
5
|
Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H. Biological activity of bis-(morpholineacetato)palladium(II) complex: Preparation, structural elucidation, cytotoxicity, DNA-/serum albumin-interaction, density functional theory, in-silico prediction and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121543. [PMID: 35797947 DOI: 10.1016/j.saa.2022.121543] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
In an effort to discover a novel potential bioactive compound, a mono-nuclear Pd(II) complex with an amino acid derivative as ligand was synthesized and characterized through experimental and computational methodologies. A square-planar configuration was suggested for palladium(II) complex utilizing density functional theory. MEP map and Mulliken atomic charge were detected electrophilic and nucleophilic regions of the compound for reactions. The lipophilicity and cytotoxic activity of the complex was more effective than cisplatin. Also, OSIRIS DataWarrior revealed proper oral bioavailability and good drug-likeness for the compound. In-vitro binding behavior of the Pd(II) complex with DNA and serum albumin (BSA) were fully determined via variety of procedures including fluorescence, UV-Vis, CD, viscosity, gel electrophoresis experiments and molecular simulation. The negative signs of ΔH° and ΔS° for Pd(II) complex-CT-DNA/-BSA systems indicated the existence of hydrogen bonding/van der Waals interactions for both binding systems. Additionally, docking simulation illustrated the interaction of Pd(II) complex with the minor groove of DNA and the hydrophobic cavity of the BSA (drug binding site I).
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
6
|
Arabpour Shiraz Z, Sohrabi N, Eslami Moghadam M, Oftadeh M. Dynamic and Thermodynamic Investigation on the Interaction of Bovine Serum Albumin with an Anticancer Pt Complex Containing Dithiocarbamate Using Molecular Docking and Spectroscopic Methods. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2058027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Nasrin Sohrabi
- Chemistry Department, Payame Noor University (PNU), Tehran, Iran
| | | | - Mohsen Oftadeh
- Chemistry Department, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
7
|
Qurrat-Ul-Ain, Abid A, Lateef M, Rafiq N, Eijaz S, Tauseef S. Multi-activity tetracoordinated pallado-oxadiazole thiones as anti-inflammatory, anti-Alzheimer, and anti-microbial agents: Structure, stability and bioactivity comparison with pallado-hydrazides. Biomed Pharmacother 2021; 146:112561. [PMID: 34965504 DOI: 10.1016/j.biopha.2021.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022] Open
Abstract
Herein, we report a comparative study based on structure, thermal and solution stability, and biopotency against lipoxygenase (LOX), butyrylcholinesterase (BChE) and microbes for Pd(II) compounds of N,O,S bearing 5-(C5H4XR)-1,3,4-oxadiazole-2-thiones (L') of type [PdL'Cl2] (P'n) and N,O bearing respective hydrazides (L) of type trans-[PdL2Cl2] (Pn) {X = C, R = 4-I, 2-Br, 4-NO2, 3-NO2, 2-Cl, 3-Cl (n = 1-6, serially); X = N (n = 7)}. Spectral techniques (IR, EI-MS, NMR) and physicochemical evaluations successfully characterized the new compounds. The L' behaved as bidentate S-N donors bonded through exocyclic sulfur and N-3' nitrogen, while L acted as amino N donors. UV-vis (solution speciation) and thermal degradation profiles consistently confirmed the greater stability for P'n than Pn compounds. These compounds manifested varying degree in vitro potential to inhibit LOX, BChE and several bacteria and fungi, affected mainly by Pd(II) presence, M-L binding mode, nature and position of R, or halo groups electronegativity. Molecular docking with human 5-LOX and BChE further validated the respective experimental inhibition findings and explored several putative mechanistic interactions (H-bonding, π-stacking, π-alkyl, π-S, etc.) at the enzyme active sites. Pn generally offered superior antimicrobial and anti-LOX (anti-inflammatory) potential than respective P'n compounds, with P3/P'5, P(2,3,7)/P'3, and P6 being comparable, better and equivalent to ampicillin, nystatin and baicalein, the reference antibacterial, antifungal and anti-LOX drugs, respectively. Contrarily, the anti-BChE activity of P'n was found better than Pn compounds, showing P'2/P1 as the most promising anti-Alzheimer drug candidates. This study bares important structural and mechanistic aspects in optimizing antimicrobial, anti-inflammatory and anti-Alzheimer activities, highlighting some potential future pallado-drug candidates.
Collapse
Affiliation(s)
- Qurrat-Ul-Ain
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan.
| | - Aisha Abid
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Mehreen Lateef
- Multi-Disciplinary Research Laboratory (MDRL), Bahria University Medical and Dental College, Karachi 75500, Pakistan
| | - Naushaba Rafiq
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Sana Eijaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Saima Tauseef
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi 75300, Pakistan
| |
Collapse
|
8
|
A mononuclear PdII complex with Naphcon; crystal structure, experimental and computational studies of the interaction with DNA/BSA and evaluation of anticancer activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|