1
|
Dubey S, Dixit M. Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:14471-14525. [PMID: 36185322 PMCID: PMC9510498 DOI: 10.1007/s11042-022-13841-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a long-term condition in which the pancreas quits producing insulin or the body's insulin isn't utilised properly. One of the signs of diabetes is Diabetic Retinopathy. Diabetic retinopathy is the most prevalent type of diabetes, if remains unaddressed, diabetic retinopathy can affect all diabetics and become very serious, raising the chances of blindness. It is a chronic systemic condition that affects up to 80% of patients for more than ten years. Many researchers believe that if diabetes individuals are diagnosed early enough, they can be rescued from the condition in 90% of cases. Diabetes damages the capillaries, which are microscopic blood vessels in the retina. On images, blood vessel damage is usually noticeable. Therefore, in this study, several traditional, as well as deep learning-based approaches, are reviewed for the classification and detection of this particular diabetic-based eye disease known as diabetic retinopathy, and also the advantage of one approach over the other is also described. Along with the approaches, the dataset and the evaluation metrics useful for DR detection and classification are also discussed. The main finding of this study is to aware researchers about the different challenges occurs while detecting diabetic retinopathy using computer vision, deep learning techniques. Therefore, a purpose of this review paper is to sum up all the major aspects while detecting DR like lesion identification, classification and segmentation, security attacks on the deep learning models, proper categorization of datasets and evaluation metrics. As deep learning models are quite expensive and more prone to security attacks thus, in future it is advisable to develop a refined, reliable and robust model which overcomes all these aspects which are commonly found while designing deep learning models.
Collapse
Affiliation(s)
- Shradha Dubey
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| | - Manish Dixit
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| |
Collapse
|
2
|
Biswas S, Khan MIA, Hossain MT, Biswas A, Nakai T, Rohdin J. Which Color Channel Is Better for Diagnosing Retinal Diseases Automatically in Color Fundus Photographs? LIFE (BASEL, SWITZERLAND) 2022; 12:life12070973. [PMID: 35888063 PMCID: PMC9321111 DOI: 10.3390/life12070973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
Color fundus photographs are the most common type of image used for automatic diagnosis of retinal diseases and abnormalities. As all color photographs, these images contain information about three primary colors, i.e., red, green, and blue, in three separate color channels. This work aims to understand the impact of each channel in the automatic diagnosis of retinal diseases and abnormalities. To this end, the existing works are surveyed extensively to explore which color channel is used most commonly for automatically detecting four leading causes of blindness and one retinal abnormality along with segmenting three retinal landmarks. From this survey, it is clear that all channels together are typically used for neural network-based systems, whereas for non-neural network-based systems, the green channel is most commonly used. However, from the previous works, no conclusion can be drawn regarding the importance of the different channels. Therefore, systematic experiments are conducted to analyse this. A well-known U-shaped deep neural network (U-Net) is used to investigate which color channel is best for segmenting one retinal abnormality and three retinal landmarks.
Collapse
Affiliation(s)
- Sangeeta Biswas
- Faculty of Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.I.A.K.); (M.T.H.)
- Correspondence: or
| | - Md. Iqbal Aziz Khan
- Faculty of Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.I.A.K.); (M.T.H.)
| | - Md. Tanvir Hossain
- Faculty of Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.I.A.K.); (M.T.H.)
| | - Angkan Biswas
- CAPM Company Limited, Bonani, Dhaka 1213, Bangladesh;
| | - Takayoshi Nakai
- Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan;
| | - Johan Rohdin
- Faculty of Information Technology, Brno University of Technology, 61200 Brno, Czech Republic;
| |
Collapse
|
3
|
Das D, Biswas SK, Bandyopadhyay S. A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:25613-25655. [PMID: 35342328 PMCID: PMC8940593 DOI: 10.1007/s11042-022-12642-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/29/2021] [Accepted: 02/09/2022] [Indexed: 06/12/2023]
Abstract
Diabetic Retinopathy (DR) is a health condition caused due to Diabetes Mellitus (DM). It causes vision problems and blindness due to disfigurement of human retina. According to statistics, 80% of diabetes patients battling from long diabetic period of 15 to 20 years, suffer from DR. Hence, it has become a dangerous threat to the health and life of people. To overcome DR, manual diagnosis of the disease is feasible but overwhelming and cumbersome at the same time and hence requires a revolutionary method. Thus, such a health condition necessitates primary recognition and diagnosis to prevent DR from developing into severe stages and prevent blindness. Innumerable Machine Learning (ML) models are proposed by researchers across the globe, to achieve this purpose. Various feature extraction techniques are proposed for extraction of DR features for early detection. However, traditional ML models have shown either meagre generalization throughout feature extraction and classification for deploying smaller datasets or consumes more of training time causing inefficiency in prediction while using larger datasets. Hence Deep Learning (DL), a new domain of ML, is introduced. DL models can handle a smaller dataset with help of efficient data processing techniques. However, they generally incorporate larger datasets for their deep architectures to enhance performance in feature extraction and image classification. This paper gives a detailed review on DR, its features, causes, ML models, state-of-the-art DL models, challenges, comparisons and future directions, for early detection of DR.
Collapse
Affiliation(s)
- Dolly Das
- National Institute of Technology Silchar, Cachar, Assam India
| | | | | |
Collapse
|
4
|
Toptaş B, Toptaş M, Hanbay D. Detection of Optic Disc Localization from Retinal Fundus Image Using Optimized Color Space. J Digit Imaging 2022; 35:302-319. [PMID: 35018540 PMCID: PMC8921449 DOI: 10.1007/s10278-021-00566-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022] Open
Abstract
Optic disc localization offers an important clue in detecting other retinal components such as the macula, fovea, and retinal vessels. With the correct detection of this area, sudden vision loss caused by diseases such as age-related macular degeneration and diabetic retinopathy can be prevented. Therefore, there is an increase in computer-aided diagnosis systems in this field. In this paper, an automated method for detecting optic disc localization is proposed. In the proposed method, the fundus images are moved from RGB color space to a new color space by using an artificial bee colony algorithm. In the new color space, the localization of the optical disc is clearer than in the RGB color space. In this method, a matrix called the feature matrix is created. This matrix is obtained from the color pixel values of the image patches containing the optical disc and the image patches not containing the optical disc. Then, the conversion matrix is created. The initial values of this matrix are randomly determined. These two matrices are processed in the artificial bee colony algorithm. Ultimately, the conversion matrix becomes optimal and is applied over the original fundus images. Thus, the images are moved to the new color space. Thresholding is applied to these images, and the optic disc localization is obtained. The success rate of the proposed method has been tested on three general datasets. The accuracy success rate for the DRIVE, DRIONS, and MESSIDOR datasets, respectively, is 100%, 96.37%, and 94.42% for the proposed method.
Collapse
Affiliation(s)
- Buket Toptaş
- Computer Eng. Dept, Engineering and Natural Science Faculty, Bandırma Onyedi Eylül University, Balıkesir, Turkey.
| | - Murat Toptaş
- Software Eng. Dept, Engineering and Natural Science Faculty, Bandırma Onyedi Eylül University, Balıkesir, Turkey
| | - Davut Hanbay
- Computer Eng. Dept., Engineering Faculty, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
5
|
Veena H, Muruganandham A, Senthil Kumaran T. A novel optic disc and optic cup segmentation technique to diagnose glaucoma using deep learning convolutional neural network over retinal fundus images. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2021. [DOI: 10.1016/j.jksuci.2021.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Romero-Oraá R, García M, Oraá-Pérez J, López MI, Hornero R. A robust method for the automatic location of the optic disc and the fovea in fundus images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105599. [PMID: 32574904 DOI: 10.1016/j.cmpb.2020.105599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The location of the optic disc (OD) and the fovea is usually crucial in automatic screening systems for diabetic retinopathy. Previous methods aimed at their location often fail when these structures do not have the standard appearance. The purpose of this work is to propose novel, robust methods for the automatic detection of the OD and the fovea. METHODS The proposed method comprises a preprocessing stage, a method for retinal background extraction, a vasculature segmentation phase and the computation of various novel saliency maps. The main novelty of this work is the combination of the proposed saliency maps, which represent the spatial relationships between some structures of the retina and the visual appearance of the OD and fovea. Another contribution is the method to extract the retinal background, based on region-growing. RESULTS The proposed methods were evaluated over a proprietary database and three public databases: DRIVE, DiaretDB1 and Messidor. For the OD, we achieved 100% accuracy for all databases except Messidor (99.50%). As for the fovea location, we also reached 100% accuracy for all databases except Messidor (99.67%). CONCLUSIONS Our results suggest that the proposed methods are robust and effective to automatically detect the OD and the fovea. This way, they can be useful in automatic screening systems for diabetic retinopathy as well as other retinal diseases.
Collapse
Affiliation(s)
- Roberto Romero-Oraá
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén 15, Valladolid 47011, Spain.; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - María García
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén 15, Valladolid 47011, Spain.; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Javier Oraá-Pérez
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén 15, Valladolid 47011, Spain..
| | - María I López
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén 15, Valladolid 47011, Spain.; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, Valladolid 47003, Spain.; Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid 47011, Spain..
| | - Roberto Hornero
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén 15, Valladolid 47011, Spain.; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid 47011, Spain..
| |
Collapse
|
7
|
Robust intensity variation and inverse surface adaptive thresholding techniques for detection of optic disc and exudates in retinal fundus images. Biocybern Biomed Eng 2019. [DOI: 10.1016/j.bbe.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Recent Development on Detection Methods for the Diagnosis of Diabetic Retinopathy. Symmetry (Basel) 2019. [DOI: 10.3390/sym11060749] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes that exists throughout the world. DR occurs due to a high ratio of glucose in the blood, which causes alterations in the retinal microvasculature. Without preemptive symptoms of DR, it leads to complete vision loss. However, early screening through computer-assisted diagnosis (CAD) tools and proper treatment have the ability to control the prevalence of DR. Manual inspection of morphological changes in retinal anatomic parts are tedious and challenging tasks. Therefore, many CAD systems were developed in the past to assist ophthalmologists for observing inter- and intra-variations. In this paper, a recent review of state-of-the-art CAD systems for diagnosis of DR is presented. We describe all those CAD systems that have been developed by various computational intelligence and image processing techniques. The limitations and future trends of current CAD systems are also described in detail to help researchers. Moreover, potential CAD systems are also compared in terms of statistical parameters to quantitatively evaluate them. The comparison results indicate that there is still a need for accurate development of CAD systems to assist in the clinical diagnosis of diabetic retinopathy.
Collapse
|
9
|
Uribe-Valencia LJ, Martínez-Carballido JF. Automated Optic Disc region location from fundus images: Using local multi-level thresholding, best channel selection, and an Intensity Profile Model. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Kanse SS, Yadav DM. Retinal Fundus Image for Glaucoma Detection: A Review and Study. JOURNAL OF INTELLIGENT SYSTEMS 2019. [DOI: 10.1515/jisys-2016-0258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Glaucoma is one of the severe visual diseases that lead to damage the eyes irreversibly by affecting the optic nerve fibers and astrocytes. Consequently, the early detection of glaucoma plays a virtual role in the medical field. The literature presents various techniques for the early detection of glaucoma. Among the various techniques, retinal image-based detection plays a major role as it comes under noninvasive methods of detection. While detecting glaucoma disorder using retinal images, various medical features of the eyes, such as retinal nerve fiber layer, cup-to-disc ratio, apex point, optic disc, and optic nerve head, and image features, such as Haralick texture, higher-order spectra, and wavelet energy, are used. In this paper, a review and study were conducted for the different techniques of glaucoma detection using retinal fundus images. Accordingly, 45 research papers were reviewed and the analysis was provided based on the extracted features, classification accuracy, and the usage of different data sets, such as DIARETDB1 data set, MESSIDOR data set, IPN data set, ZEISS data set, local data set, and real data set. Finally, we present the various research issues and solutions that can be useful for the researchers to accomplish further research on glaucoma detection.
Collapse
|
11
|
Statistical Edge Detection and Circular Hough Transform for Optic Disk Localization. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9020350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accurate and efficient localization of the optic disk (OD) in retinal images is an essential process for the diagnosis of retinal diseases, such as diabetic retinopathy, papilledema, and glaucoma, in automatic retinal analysis systems. This paper presents an effective and robust framework for automatic detection of the OD. The framework begins with the process of elimination of the pixels below the average brightness level of the retinal images. Next, a method based on the modified robust rank order was used for edge detection. Finally, the circular Hough transform (CHT) was performed on the obtained retinal images for OD localization. Three public datasets were used to evaluate the performance of the proposed method. The optic disks were successfully located with the success rates of 100%, 96.92%, and 98.88% for the DRIVE, DIARETDB0, and DIARETDB1 datasets, respectively.
Collapse
|
12
|
Diabetic retinopathy techniques in retinal images: A review. Artif Intell Med 2018; 97:168-188. [PMID: 30448367 DOI: 10.1016/j.artmed.2018.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022]
Abstract
The diabetic retinopathy is the main reason of vision loss in people. Medical experts recognize some clinical, geometrical and haemodynamic features of diabetic retinopathy. These features include the blood vessel area, exudates, microaneurysm, hemorrhages and neovascularization, etc. In Computer Aided Diagnosis (CAD) systems, these features are detected in fundus images using computer vision techniques. In this paper, we review the methods of low, middle and high level vision for automatic detection and classification of diabetic retinopathy.We give a detailed review of 79 algorithms for detecting different features of diabetic retinopathy during the last eight years.
Collapse
|
13
|
Mitra A, Banerjee PS, Roy S, Roy S, Setua SK. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 165:25-35. [PMID: 30337079 DOI: 10.1016/j.cmpb.2018.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/14/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Retinal fundus image analysis without manual intervention has been rising as an imperative analytical approach for early detection of eye-related diseases such as glaucoma and diabetic retinopathy. For analysis and detection of Glaucoma and some other disease from retinal image, there is a significant role of predicting the bounding box coordinates of Optic Disc (OD) that acts as a Region of Interest (ROI). METHODS We reframe ROI detection as a solitary regression predicament, from image pixel values to ROI coordinates including class probabilities. A Convolution Neural Network (CNN) has trained on full images to predict bounding boxes along with their analogous probabilities and confidence scores. The publically available MESSIDOR and Kaggle datasets have been used to train the network. We adopted various data augmentation techniques to amplify our dataset so that our network becomes less sensitive to noise. From a very high-level perspective, every image is divided into a 13 × 13 grid. Every grid cell envisages 5 bounding boxes along with the corresponding class probability and a confidence score. Before training, the network and the bounding box priors or anchors are initialized using k-means clustering on the original dataset using a distance metric based on Intersection of the Union (IOU) over ground-truth bounding boxes. During training in fact, a sum-squared loss function is used as the prediction's error function. Finally, Non-maximum suppression is applied by the proposed methodology to reach the concluding prediction. RESULTS The following projected method accomplish an accuracy of 99.05% and 98.78% on the Kaggle and MESSIDOR test sets for ROI detection. Results of proposed methodology indicates that proposed network is able to perceive ROI in fundus images in 0.0045 s at 25 ms of latency, which is far better than the recent-time and using no handcrafted features. CONCLUSIONS The network predicts accurate results even on low-quality images without being biased towards any particular type of image. The network prepared to see more summed up depiction rather than past works in the field. Going by the results, our novel method has better diagnosis of eye diseases in the future in a faster and reliable way.
Collapse
Affiliation(s)
- Anirban Mitra
- Department of Computer Science and Engineering, Calcutta University Technology Campus, JD-2, Sector-III, Salt Lake, Kolkata 700098, India; Department of Computer Science and Engineering, Academy of Technology, Adisaptagram 712121, West Bengal, India
| | - Priya Shankar Banerjee
- Department of Computer Science and Engineering, Academy of Technology, Adisaptagram 712121, West Bengal, India
| | - Sudipta Roy
- Department of Computer Science and Engineering, Calcutta University Technology Campus, JD-2, Sector-III, Salt Lake, Kolkata 700098, India; Mallinckrodt Institute of Radiology Department (MIR), Washington University School of Medicine, Campus Box 8225, 510 South Kingshighway Boulevard, Saint Louis, MO 63110-1076, USA.
| | - Somasis Roy
- Department of Computer Science and Engineering, Calcutta University Technology Campus, JD-2, Sector-III, Salt Lake, Kolkata 700098, India
| | - Sanjit Kumar Setua
- Department of Computer Science and Engineering, Calcutta University Technology Campus, JD-2, Sector-III, Salt Lake, Kolkata 700098, India
| |
Collapse
|
14
|
Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.09.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Automated fuzzy optic disc detection algorithm using branching of vessels and color properties in fundus images. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Muangnak N, Aimmanee P, Makhanov S. Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis. Med Biol Eng Comput 2017; 56:583-598. [PMID: 28836125 DOI: 10.1007/s11517-017-1705-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/03/2017] [Indexed: 01/23/2023]
Abstract
We propose vessel vector-based phase portrait analysis (VVPPA) and a hybrid between VVPPA and a clustering method proposed earlier for automatic optic disk (OD) detection called the vessel transform (VT). The algorithms are based primarily on the location and direction of retinal blood vessels and work equally well on fine and poor quality images. To localize the OD, the direction vectors derived from the vessel network are constructed, and points of convergence of the resulting vector field are examined by phase portrait analysis. The hybrid method (HM) uses a set of rules acquired from the decision model to alternate the use of VVPPA and VT. To identify the OD contour, the scale space (SS) approach is integrated with VVPPA, HM, and the circular approximation (SSVVPPAC and SSHMC). We test the proposed combination against state-of-the-art OD detection methods. The results show that the proposed algorithms outperform the benchmark methods, especially on poor quality images. Specifically, the HM gets the highest accuracy of 98% for localization of the OD regardless of the image quality. Testing the segmentation routines SSVVPPAC and SSHMC against the conventional methods shows that SSHMC performs better than the existing methods, achieving the highest PPV of 71.81% and the highest sensitivity of 70.67% for poor quality images. Furthermore, the HM can supplement practically any segmentation model as long as it offers multiple OD candidates. In order to prove this claim, we test the efficiency of the HM in detecting retinal abnormalities in a real clinical setting. The images have been obtained by portable lens connected to a smart phone. In detecting the abnormalities related to diabetic retinopathy (DR), the algorithm provided 94.67 and 98.13% for true negatives and true positives, respectively.
Collapse
Affiliation(s)
- Nittaya Muangnak
- Sirindhorn International Institute of Technology, Thammasat University, 131 Moo 5, Tiwanont Road, Bangkadi, Muang, Pathum Thani, 12000, Thailand
| | - Pakinee Aimmanee
- Sirindhorn International Institute of Technology, Thammasat University, 131 Moo 5, Tiwanont Road, Bangkadi, Muang, Pathum Thani, 12000, Thailand.
| | - Stanislav Makhanov
- Sirindhorn International Institute of Technology, Thammasat University, 131 Moo 5, Tiwanont Road, Bangkadi, Muang, Pathum Thani, 12000, Thailand
| |
Collapse
|
17
|
Prentašić P, Lončarić S. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 137:281-292. [PMID: 28110732 DOI: 10.1016/j.cmpb.2016.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Diabetic retinopathy is one of the leading disabling chronic diseases and one of the leading causes of preventable blindness in developed world. Early diagnosis of diabetic retinopathy enables timely treatment and in order to achieve it a major effort will have to be invested into automated population screening programs. Detection of exudates in color fundus photographs is very important for early diagnosis of diabetic retinopathy. METHODS We use deep convolutional neural networks for exudate detection. In order to incorporate high level anatomical knowledge about potential exudate locations, output of the convolutional neural network is combined with the output of the optic disc detection and vessel detection procedures. RESULTS In the validation step using a manually segmented image database we obtain a maximum F1 measure of 0.78. CONCLUSIONS As manually segmenting and counting exudate areas is a tedious task, having a reliable automated output, such as automated segmentation using convolutional neural networks in combination with other landmark detectors, is an important step in creating automated screening programs for early detection of diabetic retinopathy.
Collapse
Affiliation(s)
- Pavle Prentašić
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia.
| | - Sven Lončarić
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Optic disc detection in retinal fundus images using gravitational law-based edge detection. Med Biol Eng Comput 2016; 55:935-948. [DOI: 10.1007/s11517-016-1563-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
|