1
|
Talaat M, Si X, Liu X, Xi J. Count- and mass-based dosimetry of MDI spray droplets with polydisperse and monodisperse size distributions. Int J Pharm 2022; 623:121920. [PMID: 35714818 DOI: 10.1016/j.ijpharm.2022.121920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022]
Abstract
Most previous numerical studies of inhalation drug delivery used monodisperse aerosols or quantified deposition as the ratio of deposited particle number over the total number of released particles (i.e., count-based). These practices are reasonable when the aerosols have a sufficiently narrow size range. However, spray droplets from metered-dose inhalers (MDIs) are often polydisperse with a wide size range, so using monodisperse aerosols and/or count-based deposition quantification may lead to significant errors. The objective of this study was to develop a mass-based dosimetry method and evaluate its performance in lung delivery in a mouth-lung (G9) geometry with an albuterol-CFC inhaler. The conventional practices (monodisperse and polydisperse-count-based) were also simulated for comparison purposes. The MDI actuation in the open space was studied using both high-speed imaging and LES-Lagrangian simulations. Experimentally measured spray velocities and size distribution were implemented in the computational model as boundary conditions. Good agreement was achieved between recorded and simulated spray plume evolution spatially and temporally. The polydisperse-mass-based predictions of MDI doses compared favorably with the measurements in all three regions considered (device, mouth-throat, and lung). Significant errors in MDI regional deposition were predicted using the monodisperse and count-based methods. The new polydisperse-mass-based method also predicted local deposition hot spots that were one order of magnitude higher in intensity than the two conventional methods. The results of this study highlighted that a presentative polydisperse size distribution and appropriate deposition quantification method should be applied to reliably predict the MDI drug delivery in the human respiratory tract.
Collapse
Affiliation(s)
- Mohamed Talaat
- Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
| | - Xiuhua Si
- Department of Aerospace, Industrial, and Mechanical Engineering, California Baptist University, 8432 Magnolia Ave, Riverside, CA 92504, USA.
| | - Xiaofei Liu
- US Food and Drug Administration, Division of Pharmaceutical Analysis, 1114 Market Street, St. Louis, MO 63101, USA
| | - Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
| |
Collapse
|
2
|
Zare F, Aalaei E, Zare F, Faramarzi M, Kamali R. Targeted drug delivery to the inferior meatus cavity of the nasal airway using a nasal spray device with angled tip. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106864. [PMID: 35580527 DOI: 10.1016/j.cmpb.2022.106864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/09/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Nowadays, by advancement in computational tools, Computational Fluid and Particle Dynamics (CFPD) technique can be used more than ever. The main aim of this study is using a nasal spray device with angled tip to deliver drug particles to the inferior meatus cavity for treatment purposes. In the present study, the drug delivery to the lower regions of the nasal cavity will be improved that has been considered less in the literature. METHODS For this purpose, a spray with an angled tip was used, and the deposition of sprayed particles was compared with a spray with a straight tip. Based on the objectives presented above, a realistic model of the nasal route, including facial geometry, and paranasal sinuses obtained from a series of Computed tomography (CT) scan images, as well as the geometry of a nasal spray with two types of tip were developed. RESULTS It is observed that by using the spray with the straight tip, particles were mainly deposited in the middle and superior regions of the nasal cavity and no particles entered the inferior meatus airway. The results proved that the spray with the angled tip improved the regional deposition percentage in the inferior meatus cavity up to 2.4% of the total sprayed particles and 1 mg drug mass delivered to this region. The majority of these particles had a diameter between 15-55 µm and that could be considered by spray designers to produce more compatible sprays with the targeted region. Also, most particles were deposited near the inferior meatus cavity and so there is a strong chance to be absorbed and delivered to this region. CONCLUSION The deposition pattern and particle size contour due to the spray with the angled tip can give sight to the designers and producers of nasal sprays to build more efficient types for better targeted drug delivery purposes. With this spray type, deposited particles were observed in the inferior meatus that never happened with the straight type. Also, the angled tip of the nasal spray shows the benefit of the ease of use for the user.
Collapse
Affiliation(s)
- Farhad Zare
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Ehsan Aalaei
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
| | - Farzad Zare
- Aliebne-Abitaleb School of Medicine, Islamic Azad University, Yazd Branch, Yazd, Iran
| | - Mohammad Faramarzi
- Department of Otolaryngology-Head & Neck Surgery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Kamali
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
| |
Collapse
|
3
|
Reconciling Oxygen and Aerosol Delivery with a Hood on In Vitro Infant and Paediatric Models. Pharmaceutics 2021; 14:pharmaceutics14010091. [PMID: 35056987 PMCID: PMC8779027 DOI: 10.3390/pharmaceutics14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate optimal aerosol and oxygen delivery with a hood on an infant model and a paediatric model. A facemask and a hood with three inlets, with or without a front cover, were used. A small-volume nebuliser with a unit-dose of salbutamol was used for drug delivery and an air entrainment nebuliser was used to deliver oxygen at 35%. Infant and paediatric breathing patterns were mimicked; a bacterial filter was connected to the end of a manikin trachea for aerosol drug collection, and an oxygen analyser was used to measure the oxygen concentration. For the infant model, inhaled drug dose was significantly higher when the nebuliser was placed in the back of the hood and with a front cover. This was verified by complementary computational simulations in a comparable infant-hood model. For the paediatric model, the inhaled dose was greater with a facemask than with a hood. Oxygen delivery with a facemask and a hood with a front cover achieved a set concentration in both models, yet a hood without a front cover delivered oxygen at far lower concentrations than the set concentration.
Collapse
|
4
|
Xi J, Lei LR, Zouzas W, April Si X. Nasally inhaled therapeutics and vaccination for COVID-19: Developments and challenges. MedComm (Beijing) 2021; 2:569-586. [PMID: 34977869 PMCID: PMC8706742 DOI: 10.1002/mco2.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
The nose is the initial site of viral infection, replication, and transmission in the human body. Nasally inhaled vaccines may act as a promising alternative for COVID-19 management in addition to intramuscular vaccination. In this review, the latest developments of nasal sprays either as repurposed or antiviral formulations were presented. Nasal vaccines based on traditional medicines, such as grapefruit seed extract, algae-isolated carrageenan, and Yogurt-fermenting Lactobacillus, are promising and under active investigations. Inherent challenges that hinder effective intranasal delivery were discussed in detail, which included nasal device issues and human nose physiological complexities. We examined factors related to nasal spray administration, including the nasal angiotensin I converting enzyme 2 (ACE2) locations as the delivery target, nasal devices, medication translocation after application, delivery methods, safety issues, and other nasal delivery options. The effects of human factors on nasal spray efficacy, such as nasal physiology, disease-induced physiological modifications, intersubject variability, and mucociliary clearance, were also examined. Finally, the potential impact of nasal vaccines on COVID-19 management in the developing world was discussed. It is concluded that effective delivery of nasal sprays to ACE2-rich regions is urgently needed, especially in the context that new variants may become unresponsive to current vaccines and more refractory to existing therapies.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical EngineeringUniversity of MassachusettsLowellMassachusettsUSA
| | - Lameng Ray Lei
- Amphastar Pharmaceuticals, IncRancho CucamongaCaliforniaUSA
| | - William Zouzas
- Department of Biomedical EngineeringUniversity of MassachusettsLowellMassachusettsUSA
| | - Xiuhua April Si
- Department of AerospaceIndustrial and Mechanical EngineeringCalifornia Baptist UniversityRiversideCaliforniaUSA
| |
Collapse
|
5
|
Talaat K, Hecht A, Xi J. A comparison of CFPD, compartment, and uniform distribution models for radiation dosimetry of radionuclides in the lung. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:739-763. [PMID: 33823493 DOI: 10.1088/1361-6498/abf548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Radioactive aerosols that arise from natural sources and nuclear accidents can be a long-term hazard to human health. Despite the heterogeneous particle deposition in the respiratory tract, uniform aerosol doses have long been assumed in respiratory radiation dosimetry predictions, such as in the compartment and uniform distribution models. It is unclear how these deposition patterns affect internal radiation doses, which are critical in the health assessment of radioactive hazards. This work seeks to quantify the radio-dosimetry sensitivity to initial deposition patterns by comparing computational and compartment/uniform models. A new approach was developed to implement the compartment model into voxel phantoms (e.g. VIP-man) for radiation dosimetry. The calculated radiation fluence, energy deposition density and organ doses were compared to those obtained from coupling computational fluid-particle dynamics (CFPD) with Monte Carlo radiation transport and to those obtained from uniform source distribution approximation. The results show that the source particle distribution within the respiratory system substantially influences the radiation dosimetry distribution. The compartment and uniform models underestimated aerosol deposition in the crania ridge, leading to lower doses in the trachea and surrounding organs. For 0.5 MeV gammas, the CFPD-Monte Carlo N-particle (MCNP) model predicted a tracheal dose twice that of the compartment model and four times the uniform model. For 1 MeV betas, the CFPD-MCNP-predicted tracheal dose is 2.6 times that of the compartment model and 14 times the uniform model. Compared to the compartment/uniform models, the CFPD approach predicted a 50% lower beta dose in the lung but higher beta doses in the heart (six times), liver (four times) and stomach (2.5 times). It is suggested that including compartments for the lung periphery and tracheal carina ridge may improve the dosimetry accuracy of compartment models.
Collapse
Affiliation(s)
- Khaled Talaat
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM, 87131, United States of America
| | - Adam Hecht
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM, 87131, United States of America
| | - Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Falmouth Hall 202B, Lowell, MA, 01854, United States of America
| |
Collapse
|
6
|
Si XA, Talaat M, Su WC, Xi J. Inhalation dosimetry of nasally inhaled respiratory aerosols in the human respiratory tract with locally remodeled conducting lungs. Inhal Toxicol 2021; 33:143-159. [PMID: 33870835 DOI: 10.1080/08958378.2021.1912860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: Respiratory diseases are often accompanied by alterations to airway morphology. However, inhalation dosimetry data in remodeled airways are scarce due to the challenges in reconstructing diseased respiratory morphologies. This study aims to study the airway remodeling effects on the inhalation dosimetry of nasally inhaled nanoparticles in a nose-lung geometry that extends to G9 (ninth generation).Materials and methods: Statistical shape modeling was used to develop four diseased lung models with varying levels of bronchiolar dilation/constriction in the left-lower (LL) lobe (i.e. M1-M4). Respiratory airflow and particle deposition were simulated using a low Reynolds number k-ω turbulence model and a Lagrangian tracking approach.Results: Significant discrepancies were observed in the flow partitions between the left and right lungs, as well as between the lower and upper lobes of the left lung, which changed by 10-fold between the most dilated and constricted models.Much lower doses were predicted on the surface of the constricted LL bronchioles G4-G9, as well as into the peripheral airways beyond G9 of the LL lung. However, the LL lobar remodeling had little effect on the dosimetry in the nasopharynx, as well as on the total dosimetry in the nose-lung geometry (up to G9).Conclusion: It is suggested that airway remodeling may pose a higher viral infection risk to the host by redistributing the inhaled viruses to healthy lung lobes. Airway remodeling effects should also be considered in the treatment planning of inhalation therapies, not only because of the dosimetry variation from altered lung morphology but also its evolution as the disease progresses.
Collapse
Affiliation(s)
- Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, USA
| | - Mohamed Talaat
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, USA
| | - Wei-Chung Su
- Department of Epidemiology, Human Genetics, and Environmental Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
7
|
Talaat M, Si XA, Kitaoka H, Xi J. Septal destruction enhances chaotic mixing and increases cellular doses of nanoparticles in emphysematous acinus. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abe0f8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
One hallmark of emphysema is the breakdown of inter-alveolar septal walls in pulmonary acini. How the acinar dosimetry of environmental aerosols varies at different stages of emphysema remains unclear; this is specifically pertinent to users of tobacco products, which is the leading cause of emphysema. The objective of this study is to systematically assess the impacts of septal destruction on the behavior and fate of nanoparticles (1–800 nm) in a pyramid-shaped sub-acinar model consisting of 496 alveoli. Four diseased geometry variants were created by gradually removing the septal walls from the base model. Particle motions within the acinar region were tracked for particles raging 1–800 nm at four emphysema stages using a well-tested Lagrangian tracking model. Both spatial profile and temporal variation of particle deposition were predicted in healthy and diseased sub-acinar geometries on both a total and regional basis. Results show large differences in airflow and particle dynamics among different emphysema stages. Large differences in particle dynamics are also observed among different particle sizes, with one order of magnitude’s variation in the speeds of particles of 1, 10, and 200 nm. The destruction of septal walls also changed the deposition mechanisms, shifting from connective diffusion to chaotic mixing with emphysema progression. The sub-acinar dosimetry became less sensitive to particle size variation with more septal destructions. The lowest retention rate was found at 200–500 nm in the healthy sub-acinar geometry, but at 800 nm in all emphysematous models considered. The acinus-averaged dose for nanoparticles (1–800 nm) increases with aggravating septal destructions, indicating an even higher risk to the acinus at later emphysema stages.
Collapse
|
8
|
April Si X, Talaat M, Xi J. SARS COV-2 virus-laden droplets coughed from deep lungs: Numerical quantification in a single-path whole respiratory tract geometry. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:023306. [PMID: 33746489 PMCID: PMC7976054 DOI: 10.1063/5.0040914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 05/07/2023]
Abstract
When an infected person coughs, many virus-laden droplets will be exhaled out of the mouth. Droplets from deep lungs are especially infectious because the alveoli are the major sites of coronavirus replication. However, their exhalation fraction, size distribution, and exiting speeds are unclear. This study investigated the behavior and fate of respiratory droplets (0.1-4 μm) during coughs in a single-path respiratory tract model extending from terminal alveoli to mouth opening. An experimentally measured cough waveform was used to control the alveolar wall motions and the flow boundary conditions at lung branches from G2 to G18. The mouth opening was modeled after the image of a coughing subject captured using a high-speed camera. A well-tested k-ω turbulence model and Lagrangian particle tracking algorithm were applied to simulate cough flow evolutions and droplet dynamics under four cough depths, i.e., tidal volume ratio (TVR) = 0.13, 0.20. 0.32, and 0.42. The results show that 2-μm droplets have the highest exhalation fraction, regardless of cough depths. A nonlinear relationship exists between the droplet exhalation fraction and cough depth due to a complex deposition mechanism confounded by multiscale airway passages, multiregime flows, and drastic transient flow effects. The highest exhalation fraction is 1.6% at the normal cough depth (TVR = 0.32), with a mean exiting speed of 20 m/s. The finding that most exhaled droplets from deep lungs are 2 μm highlights the need for more effective facemasks in blocking 2-μm droplets and smaller both in infectious source control and self-protection from airborne virus-laden droplets.
Collapse
Affiliation(s)
- Xiuhua April Si
- Department of Aerospace, Industrial, and Mechanical Engineering, California Baptist University, 8432 Magnolia Ave., Riverside, California 92504, USA
| | - Mohamed Talaat
- Department of Biomedical Engineering, The University of Massachusetts at Lowell, 1 University Ave., Lowell, Massachusetts 01854, USA
| | - Jinxiang Xi
- Department of Biomedical Engineering, The University of Massachusetts at Lowell, 1 University Ave., Lowell, Massachusetts 01854, USA
| |
Collapse
|
9
|
Micrometer aerosol deposition in normal and emphysematous subacinar models. Respir Physiol Neurobiol 2021; 283:103556. [DOI: 10.1016/j.resp.2020.103556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 01/06/2023]
|
10
|
Xi J, Talaat M, Si XA, Han P, Dong H, Zheng S. Alveolar size effects on nanoparticle deposition in rhythmically expanding-contracting terminal alveolar models. Comput Biol Med 2020; 121:103791. [PMID: 32568674 DOI: 10.1016/j.compbiomed.2020.103791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
Significant differences in alveolar size exist in humans of different ages, gender, health, and among different species. The effects of alveolar sizes, as well as the accompanying breathing frequencies, on regional and local dosimetry of inhaled nanoparticles have not been sufficiently studied. Despite a well-accepted qualitative understanding of the advection-diffusion-sedimentation mechanism in the acinar region, a quantitative picture of the interactions among these factors remains inchoate. The objective of this study is to quantify the effects of alveolar size on the regional and local deposition of inhaled nanoparticles in alveolar models of varying complexities and to understand the dynamic interactions among different deposition mechanisms. Three different models were considered that retained 1, 4, and 45 alveoli, respectively. For each model, the baseline geometry was scaled by ¼, ½, 2, 4, and 8 times by volume. Temporal evolution and spatial distribution of particle deposition were tracked using a discrete-phase Lagrangian model. Lower retentions of inhaled nanoparticles were observed in the larger alveoli under the same respiration frequency, while similar retentions were found among different geometrical scales if breathing frequencies allometrically matched the alveolar size. Dimensional analysis reveals a manifold deposition mechanism with tantamount contributions from advection, diffusion, and gravitational sedimentation, each of which can become dominant depending on the location in the alveoli. Results of this study indicate that empirical correlations obtained from one sub-population cannot be directly applied to others, nor can they be simply scaled as a function of the alveolar size or respiration frequency due to the regime-transiting deposition mechanism that is both localized and dynamic.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, USA.
| | - Mohamed Talaat
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, USA
| | - Xiuhua April Si
- Department of Aerospace, Industrial, and Mechanical Engineering California Baptist University, Riverside, CA, USA
| | - Pan Han
- Department of Mechanical and Aerospace Engineering University of Virginia, Charlottesville, VA, USA
| | - Haibo Dong
- Department of Mechanical and Aerospace Engineering University of Virginia, Charlottesville, VA, USA
| | - Shaokuan Zheng
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
11
|
Talaat K, Xi J, Baldez P, Hecht A. Radiation Dosimetry of Inhaled Radioactive Aerosols: CFPD and MCNP Transport Simulations of Radionuclides in the Lung. Sci Rep 2019; 9:17450. [PMID: 31768010 PMCID: PMC6877642 DOI: 10.1038/s41598-019-54040-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/08/2019] [Indexed: 11/18/2022] Open
Abstract
Despite extensive efforts in studying radioactive aerosols, including the transmission of radionuclides in different chemical matrices throughout the body, the internal organ-specific radiation dose due to inhaled radioactive aerosols has largely relied on experimental deposition data and simplified human phantoms. Computational fluid-particle dynamics (CFPD) has proven to be a reliable tool in characterizing aerosol transport in the upper airways, while Monte Carlo based radiation codes allow accurate simulation of radiation transport. The objective of this study is to numerically assess the radiation dosimetry due to particles decaying in the respiratory tract from environmental radioactive exposures by coupling CFPD with Monte Carlo N-Particle code, version 6 (MCNP6). A physiologically realistic mouth-lung model extending to the bifurcation generation G9 was used to simulate airflow and particle transport within the respiratory tract. Polydisperse aerosols with different distributions were considered, and deposition distribution of the inhaled aerosols on the internal airway walls was quantified. The deposition mapping of radioactive aerosols was then registered to the respiratory tract of an image-based whole-body adult male model (VIP-Man) to simulate radiation transport and energy deposition. Computer codes were developed for geometry visualization, spatial normalization, and source card definition in MCNP6. Spatial distributions of internal radiation dosimetry were compared for different radionuclides (131I, 134,137Cs, 90Sr-90Y, 103Ru and 239,240Pu) in terms of the radiation fluence, energy deposition density, and dose per decay.
Collapse
Affiliation(s)
- Khaled Talaat
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jinxiang Xi
- Department of Mechanical and Biomedical Engineering, California Baptist University, Riverside, CA, 92504, USA. .,Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
| | - Phoenix Baldez
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Adam Hecht
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
12
|
Xi J, Wang Z, Si XA, Zhou Y. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling. Eur J Pharm Sci 2018; 118:113-123. [PMID: 29597042 DOI: 10.1016/j.ejps.2018.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
The human nose can expand either actively or passively to increase airflow. Nasal dilation may alter drug delivery efficiencies in the nasal airway or olfactory region. However, the dosage enhancement from nasal dilations has not been quantified. The mechanisms underlying the dilation-induced deposition variation are also not clear. This study aims to quantify the nasal dilation effects on drug delivery in the nasal airway and olfactory region using in vitro tests and numerical analysis. Two variants of an existing normal nasal airway model were developed with different levels of airway dilation. Airway dimensions were quantified in terms of hydraulic diameter, cross-sectional area, and surface area to volume ratio. Sectional nose casts were prepared using a 3-D printer for visualizing deposition patterns and quantifying delivered dosages. A well-validated computational fluid-particle dynamics (CFPD) model was utilized to understand the underlying mechanisms in the unilateral and bi-directional deliveries. In vitro tests show that nasal dilation lowered the total dosage in the nose but increased the dosage to the olfactory region in both the unilateral and bi-directional deliveries. Compared to the normal nose with unilateral delivery, nasal dilation enhanced the olfactory deposition by a factor of 2.2, while nasal dilatation with the bi-directional delivery increased by a factor of 4. Complementary numerical analyses revealed the growth of a recirculation zone in the middle meatus of dilated noses, which induced lower pressure and increased ventilation to the upper nose. In bi-directional deliveries, a significantly higher fraction of airflow was ventilated to the upper airway in the outflow side of the nose and contributed to the elevated olfactory dosage. Nasal dilation in combination with the bi-directional delivery is recommended over the conventional unilateral method for olfactory targeting.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical Engineering California Baptist University, Riverside, CA, USA.
| | - Zhaoxuan Wang
- Department of Mechanical and Industrial Engineering University of Toronto, Toronto, ON, Canada
| | - Xiuhua April Si
- Department of Aerospace, Industrial, and Mechanical Engineering California Baptist University, Riverside, CA, USA
| | - Yue Zhou
- Aerosol and Respiratory Dosimetry Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
13
|
Molecular Binding Contributes to Concentration Dependent Acrolein Deposition in Rat Upper Airways: CFD and Molecular Dynamics Analyses. Int J Mol Sci 2018; 19:ijms19040997. [PMID: 29584651 PMCID: PMC5979435 DOI: 10.3390/ijms19040997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 01/28/2023] Open
Abstract
Existing in vivo experiments show significantly decreased acrolein uptake in rats with increasing inhaled acrolein concentrations. Considering that high-polarity chemicals are prone to bond with each other, it is hypothesized that molecular binding between acrolein and water will contribute to the experimentally observed deposition decrease by decreasing the effective diffusivity. The objective of this study is to quantify the probability of molecular binding for acrolein, as well as its effects on acrolein deposition, using multiscale simulations. An image-based rat airway geometry was used to predict the transport and deposition of acrolein using the chemical species model. The low Reynolds number turbulence model was used to simulate the airflows. Molecular dynamic (MD) simulations were used to study the molecular binding of acrolein in different media and at different acrolein concentrations. MD results show that significant molecular binding can happen between acrolein and water molecules in human and rat airways. With 72 acrolein embedded in 800 water molecules, about 48% of acrolein compounds contain one hydrogen bond and 10% contain two hydrogen bonds, which agreed favorably with previous MD results. The percentage of hydrogen-bonded acrolein compounds is higher at higher acrolein concentrations or in a medium with higher polarity. Computational dosimetry results show that the size increase caused by the molecular binding reduces the effective diffusivity of acrolein and lowers the chemical deposition onto the airway surfaces. This result is consistent with the experimentally observed deposition decrease at higher concentrations. However, this size increase can only explain part of the concentration-dependent variation of the acrolein uptake and acts as a concurrent mechanism with the uptake-limiting tissue ration rate. Intermolecular interactions and associated variation in diffusivity should be considered in future dosimetry modeling of high-polarity chemicals such as acrolein.
Collapse
|
14
|
Visualization of local deposition of nebulized aerosols in a human upper respiratory tract model. J Vis (Tokyo) 2017. [DOI: 10.1007/s12650-017-0456-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Xi J, Si XA, Peters S, Nevorski D, Wen T, Lehman M. Understanding the mechanisms underlying pulsating aerosol delivery to the maxillary sinus: In vitro tests and computational simulations. Int J Pharm 2017; 520:254-266. [PMID: 28189854 DOI: 10.1016/j.ijpharm.2017.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/15/2017] [Accepted: 02/05/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pulsating aerosol delivery has been demonstrated in depositing medications into paranasal sinuses. However, its mechanisms are not fully understood. Influences of the nasal anatomy and sound frequency on intrasinus delivery are not yet clear. OBJECTIVES This study aimed to gain a better understanding of the mechanisms for enhanced intrasinus delivery with pulsating sound. Specifically, effects of the pulsation frequency, ostium size, and sinus shape on the intrasinus dosage and resonance frequency would be examined. METHODS AND MATERIALS Both experiments and computational modeling were conducted to understand the pulsating aerosol delivery in both idealized (two-bottle) and realistic nose-sinus models. A computational model of intrasinus pulsation delivery was developed using COMSOL and was cross-validated with both experimental and theoretical results. RESULTS In contrast to previous studies, seemingly erratic relations between the intrasinus dosage and ostium diameter were observed in experiments, which suggested a more complicated particle transport mechanism. Improved agreement was achieved when grouping the ostium size and sinus volume into the resonance frequency, and therefore, validated the hypothesis that intrasinus deposition strongly depends on the resonance frequency. Extensive computational simulations revealed that the deposition was highest at the resonance frequency and decreased gradually at off-resonance frequencies. The resonance frequency depended on the ostium and sinus morphology, but was independent of the nasal cavity. CONCLUSION Results of this study verified the hypothesis of resonance being the mechanism for enhanced particle deposition in the maxillary sinus. A better knowledge of the relationship between sinus dosages, pulsating frequency, and nasal morphometry is essential for improving the design of intrasinus delivery devices.
Collapse
Affiliation(s)
- Jinxiang Xi
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA.
| | - Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, USA
| | - Shannon Peters
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA
| | - Dannielle Nevorski
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA
| | - Tianshu Wen
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA
| | - Mark Lehman
- Department of Speech-Language Pathology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|