1
|
Wang H, Yan L, Ma C, Han Y. An extremum-guided interpolation for sparsely sampled photoacoustic imaging. PHOTOACOUSTICS 2023; 32:100535. [PMID: 37519337 PMCID: PMC10374619 DOI: 10.1016/j.pacs.2023.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
In photoacoustic (PA) reconstruction, spatial constraints or real-time system requirements often result to sparse PA sampling data. For sparse PA sensor data, the sparse spatial and dense temporal sampling often leads to poor signal continuity. To address the structural characteristics of sparse PA signals, a data interpolation algorithm based on extremum-guided interpolation is proposed. This algorithm is based on the continuity of the signal, and can complete the estimation of high sampling rate signals without complex mathematical calculations. PA signal data is interpolated and reconstructed, and the results are evaluated using image quality assessment methods. The simulation and experimental results show that the proposed method performs better than several typical algorithms, effectively restoring image details, suppressing the generation of artifacts and noise, and improving the quality of PA reconstruction under sparse sampling.
Collapse
Affiliation(s)
- Haoyu Wang
- Hangzhou Institute of Technology, XIDIAN University, Hangzhou 311231, Zhejiang, China
| | - Luo Yan
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Cheng Ma
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Yiping Han
- School of Physics, XIDIAN University, Xi’an 710126, Shaanxi, China
| |
Collapse
|
2
|
Zheng S, Yingsa H, Meichen S, Qi M. Quantitative photoacoustic tomography with light fluence compensation based on radiance Monte Carlo model. Phys Med Biol 2023; 68. [PMID: 36821863 DOI: 10.1088/1361-6560/acbe90] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Objective. Photoacoustic tomography (PAT) is a rapidly evolving imaging modality that provides images with high contrast and spatial resolution showing the optical properties of biological tissues. The photoacoustic pressure is proportional to the product of the optical absorption coefficient and the local light fluence. The essential challenge in reconstructing quantitative images representing spatially varying absorption coefficients is the unknown light fluence. In addition, optical attenuation induces spatial variations in the light fluence, and the heterogeneity of the fluence determines the limits of reconstruction quality and depth.Approach.In this work, a reconstruction enhancement scheme is proposed to compensate for the variation in the light fluence in the absorption coefficient recovery. The inverse problem of the radiance Monte Carlo model describing light transport through the tissue is solved by using an alternating optimization strategy. In the iteration, the absorption coefficients and photon weights are alternately updated.Main results.The method provides highly accurate quantitative images of absorption coefficients in simulations, phantoms, andin vivostudies. The results show that the method has great potential for improving the accuracy of absorption coefficient recovery compared to conventional reconstruction methods that ignore light fluence variations. Comparison with state-of-the-art fluence compensation methods shows significant improvements in root mean square error, normalized mean square absolute distance, and structural similarity metrics.Significance.This method achieves high precision quantitative imaging by compensating for nonuniform light fluence without increasing the complexity and operation of the imaging system.
Collapse
Affiliation(s)
- Sun Zheng
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, People's Republic of China
- Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, Hebei, People's Republic of China
| | - Hou Yingsa
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, People's Republic of China
| | - Sun Meichen
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, People's Republic of China
| | - Meng Qi
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Yuan C, Jiang J, Peng K, Wang B. Photoacoustic/Ultrasound Endoscopic Imaging Reconstruction Algorithm Based on the Approximate Gaussian Acoustic Field. BIOSENSORS 2022; 12:bios12070463. [PMID: 35884265 PMCID: PMC9312499 DOI: 10.3390/bios12070463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
This paper aims to propose a new photoacoustic/ultrasound endoscopic imaging reconstruction algorithm based on the approximate Gaussian acoustic field which significantly improves the resolution and signal-to-noise ratio (SNR) of the out-of-focus region. We demonstrated the method by numerical calculations and investigated the applicability of the algorithm in a chicken breast phantom. The validation was finally performed by the rabbit rectal endoscopy experiment. Simulation results show that the lateral resolution of the target point in the out-of-focus region can be well optimized with this new algorithm. Phantom experimental results show that the lateral resolution of the indocyanine green (ICG) tube in the photoacoustic image is reduced from 3.975 mm to 1.857 mm by using our new algorithm, which is a 52.3% improvement. Ultrasound images also show a significant improvement in lateral resolution. The results of the rabbit rectal endoscopy experiment prove that the algorithm we proposed is capable of providing higher-quality photoacoustic/ultrasound images. In conclusion, the algorithm enables fast acoustic resolution photoacoustic/ ultrasonic dynamic focusing and effectively improves the imaging quality of the system, which has significant guidance for the design of acoustic resolution photoacoustic/ultrasound endoscopy systems.
Collapse
Affiliation(s)
| | | | | | | | - Bo Wang
- Correspondence: (K.P.); (B.W.)
| |
Collapse
|
4
|
A Medical Endoscope Image Enhancement Method Based on Improved Weighted Guided Filtering. MATHEMATICS 2022. [DOI: 10.3390/math10091423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In clinical surgery, the quality of endoscopic images is degraded by noise. Blood, illumination changes, specular reflection, smoke, and other factors contribute to noise, which reduces the quality of an image in an occluded area, affects doctors’ judgment, prolongs the operation duration, and increases the operation risk. In this study, we proposed an improved weighted guided filtering algorithm to enhance endoscopic image tissue. An unsharp mask algorithm and an improved weighted guided filter were used to enhance vessel details and contours in endoscopic images. The scheme of the entire endoscopic image processing, which included detail enhancement, contrast enhancement, brightness enhancement, and highlight area removal, is presented. Compared with other algorithms, the proposed algorithm maintained edges and reduced halos efficiently, and its effectiveness was demonstrated using experiments. The peak signal-to-noise ratio and structural similarity of endoscopic images obtained using the proposed algorithm were the highest. The foreground–background detail variance–background variance improved. The proposed algorithm had a strong ability to suppress noise and could maintain the structure of original endoscopic images, which improved the details of tissue blood vessels. The findings of this study can provide guidelines for developing endoscopy devices.
Collapse
|
5
|
Sun Z, Du J. Suppression of motion artifacts in intravascular photoacoustic image sequences. BIOMEDICAL OPTICS EXPRESS 2021; 12:6909-6927. [PMID: 34858688 PMCID: PMC8606127 DOI: 10.1364/boe.440975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/10/2021] [Indexed: 05/25/2023]
Abstract
Intravascular photoacoustic (IVPA) imaging is an image-based imaging modality for the assessment of atherosclerotic plaques. Successful application of IVPA for in vivo coronary arterial imaging requires one overcomes the challenge of motion artifacts associated with the cardiac cycle. We propose a method for correcting artifacts owing to cardiac motion, which are observed in sequential IVPA images acquired by the continuous pullback of the imaging catheter. This method groups raw photoacoustic signals into subsets corresponding to similar phases in the cardiac cycles. Thereafter, the sequential images are reconstructed, by representing the initial pressure distribution on the vascular cross-sections based on the clustered frames of signals by time reversal. Results of simulation data demonstrate the efficacy of this method in suppressing motion artifacts. Qualitative and quantitative evaluations of the method indicate an enhancement of the image quality. Comparison results reveal that this method is computationally efficient in motion correction compared with the image-based gating.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, China
- Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, Hebei, China
| | - Jiejie Du
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, China
- Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, Hebei, China
| |
Collapse
|
6
|
Sun Z, Wang X, Yan X. An iterative gradient convolutional neural network and its application in endoscopic photoacoustic image formation from incomplete acoustic measurement. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Jin H, Zheng Z, Liu S, Zheng Y. Evaluation of Reconstruction Methodology for Helical Scan Guided Photoacoustic Endoscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4198-4208. [PMID: 32755852 DOI: 10.1109/tmi.2020.3014410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoacoustic endoscopy (PAE), combining both advantages of optical contrast and acoustic resolution, can visualize the chemical-specific optical information of tissues inside human-body. Recently, its corresponding reconstruction methods have been extensively researched. However, most of them are limited on cylindrical scan trajectories, rather than a helical scan which is more clinically practical. On this note, this article proposes a methodology of imaging reconstruction and evaluation for helical scan guided PAE. Different from traditional reconstruction method, synthetic aperture focusing technique (SAFT), our method reconstructs image using wavefield extrapolation which significantly improves computational efficiency and even takes only 0.25 seconds for 3-D reconstructions. In addition, the proposed evaluation methodology can estimate the resolutions and deviations of reconstructed images in advance, and then can be used to optimize the PAE scan parameters. Groups of simulations as well as ex-vivo experiments with different scan parameters are provided to fully demonstrate the performance of the proposed techniques. The quantitatively measured angular resolutions and deviations agree well with our theoretical derivation results D√{rs2 +h2} / [1.25(rs rd +h2)] (rad) and -h l / (rs rd +h2) (rad), respectively D,rd, rs,h and l represent transducer diameter, radius of scan trajectory, radius of source position, unit helical pitch and the distance from targets to helical scan plane, respectively). This theoretical result also suits for circular and cylindrical scan in case of h = 0 .
Collapse
|
8
|
Zheng S, Xiangyang Y. Image reconstruction based on compressed sensing for sparse-data endoscopic photoacoustic tomography. Comput Biol Med 2019; 116:103587. [PMID: 32001014 DOI: 10.1016/j.compbiomed.2019.103587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022]
Abstract
Endoscopic photoacoustic tomography (EPAT) is an interventional application of photoacoustic tomography (PAT) to visualize anatomical features and functional components of biological cavity structures such as nasal cavity, digestive tract or coronary arterial vessels. One of the main challenges in clinical applicability of EPAT is the incomplete acoustic measurements due to the limited detectors or the limited-view acoustic detection enclosed in the cavity. In this case, conventional image reconstruction methodologies suffer from significantly degraded image quality. This work introduces a compressed-sensing (CS)-based method to reconstruct a high-quality image that represents the initial pressure distribution on a luminal cross-section from incomplete discrete acoustic measurements. The method constructs and trains a complete dictionary for the sparse representation of the photoacoustically-induced acoustic measurements. The sparse representation of the complete acoustic signals is then optimally obtained based on the sparse measurements and a sensing matrix. The complete acoustic signals are recovered from the sparse representation by inverse sparse transformation. The image of the initial pressure distribution is finally reconstructed from the recovered complete signals by using the time reversal (TR) algorithm. It was shown with numerical experiments that high-quality images with reduced under-sampling artifacts can be reconstructed from sparse measurements. The comparison results suggest that the proposed method outperforms the standard TR reconstruction by 40% in terms of the structural similarity of the reconstructed images.
Collapse
Affiliation(s)
- Sun Zheng
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding, 071003, China.
| | - Yan Xiangyang
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding, 071003, China
| |
Collapse
|
9
|
Zheng S, Yixuan J. An image reconstruction method for endoscopic photoacoustic tomography in tissues with heterogeneous sound speed. Comput Biol Med 2019; 110:15-28. [PMID: 31103813 DOI: 10.1016/j.compbiomed.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 11/25/2022]
Abstract
The idealized assumption of a constant speed of sound (SOS) in acoustically inhomogeneous biological tissues usually results in blurred details, acoustic distortion and artifacts in in vivo endoscopic photoacoustic tomographic (EPAT) images. In this paper, we propose an image reconstruction method to improve EPAT imaging for luminal structures with the variable SOS. In our method, an optimal SOS providing the maximal local focusing of a measuring location within the imaging region is firstly determined. The deviation in the ultrasonic propagation time caused by the variable SOS is then compensated. The grayscale images of the optical absorption distribution on the cross-sections of the luminal structures are finally reconstructed with a filtered back-projection (FBP) algorithm based on the corrected propagation time. Any prior knowledge of the SOS distribution in the imaged tissues is not required. The results of numerical simulation experiments demonstrated that the proposed method can effectively improve the image quality by reducing the misalignment of tissues, acoustic distortion and artifacts caused by the variable SOS.
Collapse
Affiliation(s)
- Sun Zheng
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding, 071003, China.
| | - Jia Yixuan
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding, 071003, China
| |
Collapse
|
10
|
Wang B, Wei N, Peng K, Xiao J. Modified back-projection method in acoustic resolution-based photoacoustic endoscopy for improved lateral resolution. Med Phys 2018; 45:4430-4438. [DOI: 10.1002/mp.13129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/28/2018] [Accepted: 08/07/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
- Bo Wang
- Department of Biomedical Engineering; College of Biology; Hunan University; Changsha Hunan 410082 China
| | - Ningning Wei
- Department of Biomedical Engineering; College of Biology; Hunan University; Changsha Hunan 410082 China
| | - Kuan Peng
- Department of Biomedical Engineering; School of Basic Medical Science; Central South University; Changsha Hunan 410083 China
| | - Jiaying Xiao
- Department of Biomedical Engineering; School of Basic Medical Science; Central South University; Changsha Hunan 410083 China
| |
Collapse
|
11
|
Zheng S, Lan Z. Reconstruction of optical absorption coefficient distribution in intravascular photoacoustic imaging. Comput Biol Med 2018; 97:37-49. [DOI: 10.1016/j.compbiomed.2018.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 01/18/2023]
|
12
|
Zheng S, Zhen M. Numerical simulation of endoscopic magnetoacoustic tomography with magnetic induction. Comput Biol Med 2017; 90:1-14. [PMID: 28910689 DOI: 10.1016/j.compbiomed.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/17/2022]
Abstract
Endoscopic magnetoacoustic tomography with magnetic induction (EMAT-MI) provides an interventional tool to detect the electrical conductivity distribution of a tubular structure with high spatial resolution. In this work, a preliminary study on the numerical simulation of EMAT-MI images was conducted. The magnetic excitation, generation and propagation of magnetoacoustic (MA) waves in the multi-layered wall tissues were modeled and numerically simulated. The cross-sectional distribution of the acoustic source and electrical conductivity was recovered from the acoustic pressure series based on time-reversal. The validity has been demonstrated on two computer-generated phantoms. Results suggested that the conductivity boundaries can be clearly distinguished in the images of acoustic-source or conductivity distribution which are highly consistent with the numerical simulation. The resolution of the MA signals excited by the Lorentz force divergence is closely related to the pulse width of the excitation current. Sparse measuring locations and limited-view scanning may reduce the image quality although higher SNR of the MA signals leads to better image reconstruction.
Collapse
Affiliation(s)
- Sun Zheng
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China.
| | - Ma Zhen
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
13
|
Zheng S, Yuan Y, Duoduo H. A computer-based simulator for intravascular photoacoustic images. Comput Biol Med 2017; 81:176-187. [PMID: 28088080 DOI: 10.1016/j.compbiomed.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
Intravascular photoacoustic (IVPA) is a newly developed catheter-based imaging technique for the diagnosis of arterial atherosclerosis. A framework of simulating IVPA transversal images from a cross-sectional vessel model with given optical and acoustic parameters was presented. The light illumination and transportation in multi-layered wall and atherosclerotic plaque tissues were modeled through Monte Carlo (MC) simulation. The generation and transmission of photoacoustic (PA) waves in the acoustically homogeneous medium were modeled through the PA wave equation, which is solved explicitly with a finite difference time domain (FDTD) algorithm in polar coordinates. Finally, a series of cross-sectional gray-scale images displaying the distribution of the deposited optical energy were reconstructed from the time-dependent acoustic pressure series with a time-reversal based algorithm. Experimental results demonstrate a good correlation between the simulated IVPA images and the optical absorption distribution profiles. The simulator provides a powerful tool for generating IVPA image data sets, which are used to improve the imaging catheter and to test the performance of image post-processing algorithms.
Collapse
Affiliation(s)
- Sun Zheng
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, China.
| | - Yuan Yuan
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| | - Han Duoduo
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| |
Collapse
|