1
|
Kumari V, Kumar N, Kumar K S, Kumar A, Skandha SS, Saxena S, Khanna NN, Laird JR, Singh N, Fouda MM, Saba L, Singh R, Suri JS. Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look. J Cardiovasc Dev Dis 2023; 10:485. [PMID: 38132653 PMCID: PMC10743870 DOI: 10.3390/jcdd10120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND MOTIVATION Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along with its bias. METHODS Using a PRISMA model, 145 best UNet-based and non-UNet-based methods for wall segmentation were selected and analyzed for their characteristics and scientific and clinical validation. This study computed the coronary wall thickness by estimating the inner and outer borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework. FINDINGS AND CONCLUSIONS UNet provides a powerful paradigm for the segmentation of coronary walls in IVUS scans due to its ability to extract automated features at different scales in encoders, reconstruct the segmented image using decoders, and embed the variants in skip connections. Most of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is necessary to move from a paper-to-practice approach.
Collapse
Affiliation(s)
- Vandana Kumari
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Naresh Kumar
- Department of Applied Computational Science and Engineering, G L Bajaj Institute of Technology and Management, Greater Noida 201310, India
| | - Sampath Kumar K
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Ashish Kumar
- School of CSET, Bennett University, Greater Noida 201310, India;
| | - Sanagala S. Skandha
- Department of CSE, CMR College of Engineering and Technology, Hyderabad 501401, India;
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIT Bhubaneswar, Bhubaneswar 751003, India;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy;
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India;
| | - Jasjit S. Suri
- Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Science & Engineering, Graphic Era, Deemed to be University, Dehradun 248002, India
- Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
2
|
Arora P, Singh P, Girdhar A, Vijayvergiya R. A State-Of-The-Art Review on Coronary Artery Border Segmentation Algorithms for Intravascular Ultrasound (IVUS) Images. Cardiovasc Eng Technol 2023; 14:264-295. [PMID: 36650320 DOI: 10.1007/s13239-023-00654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Intravascular Ultrasound images (IVUS) is a useful guide for medical practitioners to identify the vascular status of coronary arteries in human beings. IVUS is a unique intracoronary imaging modality that is used as an adjunct to angioplasty to view vessel structures using a catheter with high resolutions. Segmentation of IVUS images has always remained a challenging task due to various impediments, for example, similar tissue components, vessel structures, and artifacts imposed during the acquisition process. Many researchers have applied various techniques to develop standard methods of image interpretation, however, the ultimate goal is still elusive to most researchers. This challenge was presented at the MICCAI- Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop in 2011. This paper presents a major review of recently reported work in the field, with a detailed analysis of various segmentation techniques applied in IVUS, and highlights the directions for future research. The findings recommend a reference database with a larger number of samples acquired at varied transducer frequencies with special consideration towards complex lesions, suitable validation metrics, and ground-truth definition as a standard against which to compare new and current algorithms.
Collapse
Affiliation(s)
- Priyanka Arora
- Research Scholar, IKG Punjab Technical University, Punjab, India. .,Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India.
| | - Parminder Singh
- Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Akshay Girdhar
- Department of Information Technology, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Rajesh Vijayvergiya
- Department of Cardiology, Advanced Cardiac Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
3
|
Su B, Wang Z, Gong Y, Li M, Teng Y, Yu S, Zong Y, Yao W, Wang J. Anal center detection and classification of perianal healthy condition. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
|
5
|
Detection of Healthy and Diseased Pylorus Natural Anatomical Center with Convolutional Neural Network Classification and Filters. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Lo Vercio L, Del Fresno M, Larrabide I. Lumen-intima and media-adventitia segmentation in IVUS images using supervised classifications of arterial layers and morphological structures. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 177:113-121. [PMID: 31319939 DOI: 10.1016/j.cmpb.2019.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/26/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Intravascular ultrasound (IVUS) provides axial grey-scale images of blood vessels. The large number of images require automatic analysis, specifically to identify the lumen and outer vessel wall. However, the high amount of noise, the presence of artifacts and anatomical structures, such as bifurcations, calcifications and fibrotic plaques, usually hinder the proper automatic segmentation of the vessel wall. METHODS Lumen, media, adventitia and surrounding tissues are automatically detected using Support Vector Machines (SVMs). The classification performance of the SVMs vary according to the kind of structure present within each region of the image. Random Forest (RF) is used to detect different morphological structures and to modify the initial layer classification depending on the detected structure. The resulting classification maps are fed into a segmentation method based on deformable contours to detect lumen-intima (LI) and media-adventitia (MA) interfaces. RESULTS The modifications in the layer classifications according to the presence of structures proved to be effective improving LI and MA segmentations. The proposed method reaches a Jaccard Measure (JM) of 0.88 ± 0.08 for LI segmentation, compared with 0.88 ± 0.05 of a semiautomatic method. When looking at MA, our method reaches a JM of 0.84 ± 0.09, and outperforms previous automatic methods in terms of HD, with 0.51mm ± 0.30. CONCLUSIONS A simple modification to the arterial layer classification produces results that match and improve state-of-the-art fully-automatic segmentation methods for LI and MA in 20MHz IVUS images. For LI segmentation, the proposed automatic method performs accurately as semi-automatic methods. For MA segmentation, our method matched the quality of state-of-the-art automatic methods described in the literature. Furthermore, our implementation is modular and open-source, allowing for future extensions and improvements.
Collapse
Affiliation(s)
- Lucas Lo Vercio
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Mariana Del Fresno
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Comisión de Investigaciones Científicas de la Provincia deBuenos Aires (CICPBA), Argentina
| | - Ignacio Larrabide
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
7
|
IVUS images segmentation using spatial fuzzy clustering and hierarchical level set evolution. Comput Biol Med 2019; 109:207-217. [DOI: 10.1016/j.compbiomed.2019.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 11/22/2022]
|
8
|
Kermani A, Ayatollahi A. A new nonparametric statistical approach to detect lumen and Media-Adventitia borders in intravascular ultrasound frames. Comput Biol Med 2018; 104:10-28. [PMID: 30419417 DOI: 10.1016/j.compbiomed.2018.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022]
Abstract
Intravascular ultrasound (IVUS) imaging is widely known as a powerful interventional imaging modality for diagnosing atherosclerosis, and for treatment planning. In this regard, the detection of lumen and media-adventitia (MA) borders is considered to be a vital process. However, the manual detection of these two borders by the physician is cumbersome due to the large number of frames in a sequence. In addition, no approved universal automatic method has been presented so far due to the great diversity in the appearance of the coronary artery in the images acquired by different IVUS systems. To this end, the present study aimed to provide a new border search theory on the radial profile, based upon the nonparametric statistical approach, and to develop a generic and fully automatic three-step process for extracting the lumen and MA borders in IVUS frames based on the proposed theory. Thereafter, the proposed theory and three-step process were evaluated on synthetic images, as well as on a test set of standard publicly available images, respectively. The results showed that our three-step process could segment the borders with ≥0.82 and with ≥0.75 Jaccard measure (JM) to manual borders in IVUS frames acquired by the 20 MHz and 40 MHz probes, respectively. Based on the results, the lumen and MA borders can be extracted automatically, and the border extraction process can be implemented in parallel for a polar image due to the capability of the present proposed method to estimate the borders for each angle independently.
Collapse
Affiliation(s)
- Ali Kermani
- School of Electrical Engineering, Iran University of Science and Technology, Iran
| | - Ahmad Ayatollahi
- School of Electrical Engineering, Iran University of Science and Technology, Iran.
| |
Collapse
|
9
|
China D, Illanes A, Poudel P, Friebe M, Mitra P, Sheet D. Anatomical Structure Segmentation in Ultrasound Volumes Using Cross Frame Belief Propagating Iterative Random Walks. IEEE J Biomed Health Inform 2018; 23:1110-1118. [PMID: 30113902 DOI: 10.1109/jbhi.2018.2864896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ultrasound (US) is widely used as a low-cost alternative to computed tomography or magnetic resonance and primarily for preliminary imaging. Since speckle intensity in US images is inherently stochastic, readers are often challenged in their ability to identify the pathological regions in a volume of a large number of images. This paper introduces a generalized approach for volumetric segmentation of structures in US images and volumes. We employ an iterative random walks (IRW) solver, a random forest learning model, and a gradient vector flow (GVF) based interframe belief propagation technique for achieving cross-frame volumetric segmentation. At the start, a weak estimate of the tissue structure is obtained using estimates of parameters of a statistical mechanics model of US tissue interaction. Ensemble learning of these parameters further using a random forest is used to initialize the segmentation pipeline. IRW is used for correcting the contour in various steps of the algorithm. Subsequently, a GVF-based interframe belief propagation is applied to adjacent frames based on the initialization of contour using information in the current frame to segment the complete volume by frame-wise processing. We have experimentally evaluated our approach using two different datasets. Intravascular ultrasound (IVUS) segmentation was evaluated using 10 pullbacks acquired at 20 MHz and thyroid US segmentation is evaluated on 16 volumes acquired at [Formula: see text] MHz. Our approach obtains a Jaccard score of [Formula: see text] for IVUS segmentation and [Formula: see text] for thyroid segmentation while processing each frame in [Formula: see text] for the IVUS and in [Formula: see text] for thyroid segmentation without the need of any computing accelerators such as GPUs.
Collapse
|