2
|
Fu F, Shan Y, Yang G, Zheng C, Zhang M, Rong D, Wang X, Lu J. Deep Learning for Head and Neck CT Angiography: Stenosis and Plaque Classification. Radiology 2023; 307:e220996. [PMID: 36880944 DOI: 10.1148/radiol.220996] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Background Studies have rarely investigated stenosis detection from head and neck CT angiography scans because accurate interpretation is time consuming and labor intensive. Purpose To develop an automated convolutional neural network-based method for accurate stenosis detection and plaque classification in head and neck CT angiography images and compare its performance with that of radiologists. Materials and Methods A deep learning (DL) algorithm was constructed and trained with use of head and neck CT angiography images that were collected retrospectively from four tertiary hospitals between March 2020 and July 2021. CT scans were partitioned into training, validation, and independent test sets at a ratio of 7:2:1. An independent test set of CT angiography scans was collected prospectively between October 2021 and December 2021 in one of the four tertiary centers. Stenosis grade categories were as follows: mild stenosis (<50%), moderate stenosis (50%-69%), severe stenosis (70%-99%), and occlusion (100%). The stenosis diagnosis and plaque classification of the algorithm were compared with the ground truth of consensus by two radiologists (with more than 10 years of experience). The performance of the models was analyzed in terms of accuracy, sensitivity, specificity, and areas under the receiver operating characteristic curve. Results There were 3266 patients (mean age ± SD, 62 years ± 12; 2096 men) evaluated. The consistency between radiologists and the DL-assisted algorithm on plaque classification was 85.6% (320 of 374 cases [95% CI: 83.2, 88.6]) on a per-vessel basis. Moreover, the artificial intelligence model assisted in visual assessment, such as increasing confidence in the degree of stenosis. This reduced the time needed for diagnosis and report writing of radiologists from 28.8 minutes ± 5.6 to 12.4 minutes ± 2.0 (P < .001). Conclusion A deep learning algorithm for head and neck CT angiography interpretation accurately determined vessel stenosis and plaque classification and had equivalent diagnostic performance when compared with experienced radiologists. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Fan Fu
- From the Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St, Xicheng District, Beijing 100053, China (F.F., Y.S., M.Z., D.R., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (F.F., Y.S., M.Z., D.R., J.L.); Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China (F.F.); Shukun (Beijing) Technology Co, Beijing, China (G.Y., C.Z.); and Department of Radiology, Shandong Provincial Hospital, Jinan, China (X.W.)
| | - Yi Shan
- From the Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St, Xicheng District, Beijing 100053, China (F.F., Y.S., M.Z., D.R., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (F.F., Y.S., M.Z., D.R., J.L.); Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China (F.F.); Shukun (Beijing) Technology Co, Beijing, China (G.Y., C.Z.); and Department of Radiology, Shandong Provincial Hospital, Jinan, China (X.W.)
| | - Guang Yang
- From the Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St, Xicheng District, Beijing 100053, China (F.F., Y.S., M.Z., D.R., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (F.F., Y.S., M.Z., D.R., J.L.); Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China (F.F.); Shukun (Beijing) Technology Co, Beijing, China (G.Y., C.Z.); and Department of Radiology, Shandong Provincial Hospital, Jinan, China (X.W.)
| | - Chao Zheng
- From the Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St, Xicheng District, Beijing 100053, China (F.F., Y.S., M.Z., D.R., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (F.F., Y.S., M.Z., D.R., J.L.); Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China (F.F.); Shukun (Beijing) Technology Co, Beijing, China (G.Y., C.Z.); and Department of Radiology, Shandong Provincial Hospital, Jinan, China (X.W.)
| | - Miao Zhang
- From the Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St, Xicheng District, Beijing 100053, China (F.F., Y.S., M.Z., D.R., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (F.F., Y.S., M.Z., D.R., J.L.); Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China (F.F.); Shukun (Beijing) Technology Co, Beijing, China (G.Y., C.Z.); and Department of Radiology, Shandong Provincial Hospital, Jinan, China (X.W.)
| | - Dongdong Rong
- From the Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St, Xicheng District, Beijing 100053, China (F.F., Y.S., M.Z., D.R., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (F.F., Y.S., M.Z., D.R., J.L.); Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China (F.F.); Shukun (Beijing) Technology Co, Beijing, China (G.Y., C.Z.); and Department of Radiology, Shandong Provincial Hospital, Jinan, China (X.W.)
| | - Ximing Wang
- From the Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St, Xicheng District, Beijing 100053, China (F.F., Y.S., M.Z., D.R., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (F.F., Y.S., M.Z., D.R., J.L.); Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China (F.F.); Shukun (Beijing) Technology Co, Beijing, China (G.Y., C.Z.); and Department of Radiology, Shandong Provincial Hospital, Jinan, China (X.W.)
| | - Jie Lu
- From the Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St, Xicheng District, Beijing 100053, China (F.F., Y.S., M.Z., D.R., J.L.); Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China (F.F., Y.S., M.Z., D.R., J.L.); Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China (F.F.); Shukun (Beijing) Technology Co, Beijing, China (G.Y., C.Z.); and Department of Radiology, Shandong Provincial Hospital, Jinan, China (X.W.)
| |
Collapse
|
3
|
Lin Y, Huang J, Xu W, Cui C, Xu W, Li Z. Method for Carotid Artery 3-D Ultrasound Image Segmentation Based on CSWin Transformer. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:645-656. [PMID: 36460566 DOI: 10.1016/j.ultrasmedbio.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Precise segmentation of carotid artery (CA) structure is an important prerequisite for the medical assessment and detection of carotid plaques. For automatic segmentation of the media-adventitia boundary (MAB) and lumen-intima boundary (LIB) in 3-D ultrasound images of the CA, a U-shaped CSWin transformer (U-CSWT) is proposed. Both the encoder and decoder of the U-CSWT are composed of hierarchical CSWT modules, which can capture rich global context information in the 3-D image. Experiments were performed on a 3-D ultrasound image data set of the CA, and the results indicate that the U-CSWT performs better than other convolutional neural network (CNN)-based and CNN-transformer hybrid methods. The model yields Dice coefficients of 94.6 ± 3.0% and 90.8 ± 5.1% for the MAB and LIB in the common carotid artery (CCA) and 92.9 ± 4.9% and 89.6 ± 6.2% for MAB and LIB in the bifurcation, respectively. Our U-CSWT is expected to become an effective method for automatic segmentation of 3-D ultrasound images of CA.
Collapse
Affiliation(s)
- Yanping Lin
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Huang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wangjie Xu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Cancan Cui
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenzhe Xu
- Department of Ultrasound, Zibo Central Hospital, Zibo, Shangdong Province, China
| | - Zhaojun Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Ultrasound, Shanghai General Hospital Jiading Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Jodas DS, da Costa MFM, Parreira TAA, Pereira AS, Tavares JMRS. Using a distance map and an active contour model to segment the carotid artery boundary from the lumen contour in proton density weighted magnetic resonance images. Comput Biol Med 2020; 123:103901. [PMID: 32658794 DOI: 10.1016/j.compbiomed.2020.103901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 10/23/2022]
Abstract
Segmentation methods have assumed an important role in image-based diagnosis of several cardiovascular diseases. Particularly, the segmentation of the boundary of the carotid artery is demanded in the detection and characterization of atherosclerosis and assessment of the disease progression. In this article, a fully automatic approach for the segmentation of the carotid artery boundary in Proton Density Weighted Magnetic Resonance Images is presented. The approach relies on the expansion of the lumen contour based on a distance map built using the gray-weighted distance relative to the center of the identified lumen region in the image under analysis. Then, a Snake model with a modified weighted external energy based on the combination of a balloon force along with a Gradient Vector Flow-based external energy is applied to the expanded contour towards the correct boundary of the carotid artery. The average values of the Dice coefficient, Polyline distance, mean contour distance and centroid distance found in the segmentation of 139 carotid arteries were 0.83 ± 0.11, 2.70 ± 1.69 pixels, 2.79 ± 1.89 pixels and 3.44 ± 2.82 pixels, respectively. The segmentation results of the proposed approach were also compared against the ones obtained by related approaches found in the literature, which confirmed the outstanding performance of the new approach. Additionally, the proposed weighted external energy for the Snake model was shown to be also robust to carotid arteries with large thickness and weak boundary image edges.
Collapse
Affiliation(s)
- Danilo Samuel Jodas
- CAPES Foundation, Ministry of Education of Brazil, Brasília - DF, 70040-020, Brazil; Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal.
| | - Maria Francisca Monteiro da Costa
- IFE Neurorradiologia, Serviço de Neurorradiologia, Centro Hospitalar São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Tiago A A Parreira
- AH Neurorradiologia, Serviço de Neurorradiologia, Centro Hospitalar São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Aledir Silveira Pereira
- Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, 15054-000, S. J. do Rio Preto, Brazil.
| | - João Manuel R S Tavares
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal.
| |
Collapse
|
7
|
Saba L, Micheletti G, Brinjikji W, Garofalo P, Montisci R, Balestrieri A, Suri JS, DeMarco JK, Lanzino G, Sanfilippo R. Carotid Intraplaque-Hemorrhage Volume and Its Association with Cerebrovascular Events. AJNR Am J Neuroradiol 2019; 40:1731-1737. [PMID: 31558503 DOI: 10.3174/ajnr.a6189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Our aim was to assess the relationship between volume and percentage of intraplaque hemorrhage measured using CT and the occurrence of cerebrovascular events at the time of CT. MATERIALS AND METHODS One-hundred-twenty-three consecutive subjects (246 carotid arteries) with a mean age of 69 years who underwent CTA were included in this retrospective study. Plaque volume of components and subcomponents (including intraplaque hemorrhage volume) was quantified with dedicated software. RESULTS Forty-six arteries were excluded because no plaque was identified. In the remaining 200 carotid arteries, a statistically significant difference was found between presentation with cerebrovascular events and lipid volume (P = .002), intraplaque hemorrhage volume (P = .002), percentage of lipid (P = .002), percentage of calcium (P = .001), percentage of intraplaque hemorrhage (P = .001), percentage of lipid-intraplaque hemorrhage (P = .001), and intraplaque hemorrhage/lipid ratio (P = .001). The highest receiver operating characteristic area under the curve was obtained with the intraplaque hemorrhage volume with a value of 0.793 (P = .001), percentage of intraplaque hemorrhage with an area under the curve of 0.812 (P = .001), and the intraplaque hemorrhage/lipid ratio with an area under the curve value of 0.811 (P = .001). CONCLUSIONS Results of our study suggest that Hounsfield unit values <25 have a statistically significant association with the presence of cerebrovascular events and that the ratio intraplaque hemorrhage/lipid volume represents a strong parameter for the association of cerebrovascular events.
Collapse
Affiliation(s)
- L Saba
- From the Departments of Radiology (L.S., G.M., P.G., A.B.)
| | - G Micheletti
- From the Departments of Radiology (L.S., G.M., P.G., A.B.)
| | | | - P Garofalo
- From the Departments of Radiology (L.S., G.M., P.G., A.B.)
| | - R Montisci
- Vascular Surgery (R.M., R.S.), Azienda Ospedaliero Universitaria, Monserrato (Cagliari), Italy
| | - A Balestrieri
- From the Departments of Radiology (L.S., G.M., P.G., A.B.)
| | - J S Suri
- Stroke Monitoring and Diagnostic Division (J.S.S.), AtheroPoint, Roseville, California
- Point-of-Care Devices (J.S.S.), Global Biomedical Technologies, Roseville, California
- Department of Electrical Engineering (J.S.S.), University of Idaho, Moscow, Idaho (Affiliated)
| | - J K DeMarco
- Department of Radiology (J.K.D.), Walter Reed Medical Center, Bethesda, Maryland
| | - G Lanzino
- Neurosurgery (G.L.), Mayo Clinic, Rochester, Minnesota
| | - R Sanfilippo
- Vascular Surgery (R.M., R.S.), Azienda Ospedaliero Universitaria, Monserrato (Cagliari), Italy
| |
Collapse
|
8
|
Zhou R, Fenster A, Xia Y, Spence JD, Ding M. Deep learning-based carotid media-adventitia and lumen-intima boundary segmentation from three-dimensional ultrasound images. Med Phys 2019; 46:3180-3193. [PMID: 31071228 PMCID: PMC6851826 DOI: 10.1002/mp.13581] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/27/2019] [Accepted: 04/28/2019] [Indexed: 01/14/2023] Open
Abstract
Purpose Quantification of carotid plaques has been shown to be important for assessing as well as monitoring the progression and regression of carotid atherosclerosis. Various metrics have been proposed and methods of measurements ranging from manual tracing to automated segmentations have also been investigated. Of those metrics, quantification of carotid plaques by measuring vessel‐wall‐volume (VWV) using the segmented media‐adventitia (MAB) and lumen‐intima (LIB) boundaries has been shown to be sensitive to temporal changes in carotid plaque burden. Thus, semi‐automatic MAB and LIB segmentation methods are required to help generate VWV measurements with high accuracy and less user interaction. Methods In this paper, we propose a semiautomatic segmentation method based on deep learning to segment the MAB and LIB from carotid three‐dimensional ultrasound (3DUS) images. For the MAB segmentation, we convert the segmentation problem to a pixel‐by‐pixel classification problem. A dynamic convolutional neural network (Dynamic CNN) is proposed to classify the patches generated by sliding a window along the norm line of the initial contour where the CNN model is fine‐tuned dynamically in each test task. The LIB is segmented by applying a region‐of‐interest of carotid images to a U‐Net model, which allows the network to be trained end‐to‐end for pixel‐wise classification. Results A total of 144 3DUS images were used in this development, and a threefold cross‐validation technique was used for evaluation of the proposed algorithm. The proposed algorithm‐generated accuracy was significantly higher than the previous methods but with less user interactions. Comparing the algorithm segmentation results with manual segmentations by an expert showed that the average Dice similarity coefficients (DSC) were 96.46 ± 2.22% and 92.84 ± 4.46% for the MAB and LIB, respectively, while only an average of 34 s (vs 1.13, 2.8 and 4.4 min in previous methods) was required to segment a 3DUS image. The interobserver experiment indicated that the DSC was 96.14 ± 1.87% between algorithm‐generated MAB contours of two observers' initialization. Conclusions Our results showed that the proposed carotid plaque segmentation method obtains high accuracy and repeatability with less user interactions, suggesting that the method could be used in clinical practice to measure VWV and monitor the progression and regression of carotid plaques.
Collapse
Affiliation(s)
- Ran Zhou
- Medical Ultrasound Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,Key Laboratory of Molecular Biophysics of Education Ministry of China, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Aaron Fenster
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada
| | - Yujiao Xia
- Medical Ultrasound Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,Key Laboratory of Molecular Biophysics of Education Ministry of China, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - J David Spence
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada.,Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Western University, London, ON, Canada
| | - Mingyue Ding
- Medical Ultrasound Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,Key Laboratory of Molecular Biophysics of Education Ministry of China, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|