1
|
Dbouk T, Roger F, Drikakis D, Ali S, Menu H, Wiel E. The impact of endotracheal intubation on oxygen delivery, trachea pressure and wall deformation. Comput Biol Med 2023; 164:107325. [PMID: 37586206 DOI: 10.1016/j.compbiomed.2023.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
This paper concerns improving endotracheal tube (ETT) insertion through advanced computational science modelling. The study aims to better understand endotracheal intubation (ETI) and reduce medical errors in intensive and critical care units since ETT insertion is unique for each patient, depending on age, gender, size, physiology, and underlying health conditions. We have employed computational fluid dynamics and biomechanics modelling to investigate the effect of ETT for three ventilation modes on (a) local oxygen delivery to the lungs, (b) air pressure and wall shear stress at the tracheal walls, and (c) oscillatory elastic deformation of the tracheal tissues and muscle. For the first time, we reveal how the ventilation mode and ETT insertion in the trachea may induce major complications, especially in long periods of ETT. We show that rotating the ETT or displacing it by 2 mm only can induce a significant rise in the tracheal pressure up to 177 cmH2O. This study, for the first time, shows the vital role of computers in biology and medicine to provide enhanced decision-making-support to clinicians and medical doctors dealing with ETI.
Collapse
Affiliation(s)
- T Dbouk
- CORIA, CNRS, UMR 6614, Rouen Normandy University, UNIROUEN, 76000 Rouen, France.
| | - F Roger
- IMT Nord Europe, Materials and processes Center, University of Lille, F-59000 Lille, France
| | - D Drikakis
- Institute for Advanced Modelling and Simulation, University of Nicosia, Nicosia, CY-2417, Cyprus
| | - S Ali
- Junia, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - H Menu
- Faculté des Sciences de la Santé et du Sport (UFR3S) - Médecine, CHU de Lille, ULR 2694, METRICS, 59000 Lille, France
| | - E Wiel
- Faculté des Sciences de la Santé et du Sport (UFR3S) - Médecine, CHU de Lille, ULR 2694, METRICS, 59000 Lille, France
| |
Collapse
|
2
|
Zobaer T, Sutradhar A. Modeling the effect of tumor compression on airflow dynamics in trachea using contact simulation and CFD analysis. Comput Biol Med 2021; 135:104574. [PMID: 34175532 DOI: 10.1016/j.compbiomed.2021.104574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Malignant central airway obstruction can cause severe breathing difficulty in a patient that requires surgical intervention or stent implantation to alleviate it. A predictive model to identify the onset of this event as the central airway is progressively compressed by tumor growth will be helpful for clinicians to plan for medical intervention. We present such a model to simulate tumor compression of the trachea and the resulting change in airflow dynamics to estimate the level of stenosis that will cause severe breathing difficulties. A patient-specific model of trachea was generated from acquired Computed Tomography (CT) scans for the simulations. The compression of this trachea due to tumor growth is modeled using nonlinear contact simulations of ellipsoidal tumors with the trachea. Computational fluid dynamics (CFD) is employed to simulate the turbulent airflow during inhalation in the stenosed trachea. From the CFD simulated flow fields, the power loss due to airflow through the domain is calculated. The results show that when the obstruction in the trachea reaches 50%, compared to the undeformed model, the power loss can rise to more than 66%. A measure of breathing difficulty can be derived by correlating it with the power loss. Thus, medical intervention can be predicted based on the degree of stenosis if the induced power loss exceeds a threshold that causes severe breathing discomfort.
Collapse
Affiliation(s)
- Tareq Zobaer
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.
| | - Alok Sutradhar
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Sul B, Altes T, Ruppert K, Qing K, Hariprasad DS, Morris M, Reifman J, Wallqvist A. In vivo dynamics of the tracheal airway and its influences on respiratory airflows. J Biomech Eng 2019; 141:2733770. [PMID: 31074759 DOI: 10.1115/1.4043723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 11/08/2022]
Abstract
Respiration is a dynamic process accompanied by morphological changes in the airways. Although deformation of large airways is expected to exacerbate pulmonary disease symptoms by obstructing airflow during increased minute ventilation, its quantitative effects on airflow characteristics remain unclear. Here, we used an exemplar case derived from in vivo dynamic imaging and examined the effects of tracheal deformation on airflow characteristics under different conditions. First, we measured tracheal deformation profiles of a healthy lung using magnetic resonance imaging during forced exhalation, which we simulated to characterize subject-specific airflow patterns. Subsequently, for both inhalation and exhalation, we compared the airflows when the maximal deformation in tracheal cross-sectional area was 0% (rigid), 33% (mild), 50% (moderate), or 75% (severe). We quantified differences in airflow patterns between deformable and rigid airways by computing the correlation coefficients (R) and the root-mean-square of differences (Drms) between their velocity contours. For both inhalation and exhalation, airflow patterns were similar in all branches between the rigid and mild conditions (R > 0.9; Drms < 32%). However, airflow characteristics in the moderate and severe conditions differed markedly from those in the rigid and mild conditions in all lung branches, particularly for inhalation (moderate: R > 0.1, Drms < 76%; severe: R > 0.2, Drms < 96%). Our exemplar case supports the use of a rigid airway assumption to compute flows for mild deformation. For moderate or severe deformation, however, dynamic contraction should be considered, especially during inhalation, to accurately predict airflow and elucidate the underlying pulmonary pathology.
Collapse
Affiliation(s)
- Bora Sul
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Talissa Altes
- Department of Radiology, University of Missouri, Columbia, Missouri
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kun Qing
- Department of Radiology, University of Virginia, Charlottesville, Virginia
| | - Daniel S Hariprasad
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Michael Morris
- Graduate Medical Education, Brooke Army Medical Center, Joint Base San Antonio Fort Sam Houston, Texas
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| |
Collapse
|
4
|
Kim M, Collier GJ, Wild JM, Chung YM. Effect of upper airway on tracheobronchial fluid dynamics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3112. [PMID: 29856119 DOI: 10.1002/cnm.3112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 05/17/2023]
Abstract
The upper airways play a significant role in the tracheal flow dynamics. Despite many previous studies, however, the effect of the upper airways on the ventilation distribution in distal airways has remained a challenge. The aim of this study is to experimentally and computationally investigate the dynamic behaviour in the intratracheal flow induced by the upper respiratory tract and to assess its influence on the subsequent tributaries. Patient-specific images from 2 different modalities (magnetic resonance imaging of the upper airways and computed tomography of the lower airways) were segmented and combined. An experimental phantom of patient-specific airways (including the oral cavity, larynx, trachea, down to generations 6-8) was generated using 3D printing. The flow velocities in this phantom model were measured by the flow-sensitised phase contrast magnetic resonance imaging technique and compared with the computational fluid dynamics simulations. Both experimental and computational results show a good agreement in the time-averaged velocity fields as well as fluctuating velocity. The flows in the proximal trachea were complex and unsteady under both lower- and higher-flow rate conditions. Computational fluid dynamics simulations were also performed with an airways model without the upper airways. Although the flow near the carina remained unstable only when the inflow rate was high, the influence of the upper airways caused notable changes in distal flow distributions when the 2 airways models were compared with and without the upper airways. The results suggest that the influence of the upper airways should be included in the respiratory flow assessment as the upper airways extensively affect the flows in distal airways and consequent ventilation distribution in the lungs.
Collapse
Affiliation(s)
- Minsuok Kim
- School of Engineering, University of Warwick, Coventry, UK
| | - Guilhem J Collier
- Academic Unit of Radiology, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- Academic Unit of Radiology, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | | |
Collapse
|