1
|
Qi Y, Li G, Yang J, Li H, Yu Q, Qu M, Ning H, Wang Y. ECGEFNet: A two-branch deep learning model for calculating left ventricular ejection fraction using electrocardiogram. Artif Intell Med 2025; 160:103065. [PMID: 39809042 DOI: 10.1016/j.artmed.2024.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Left ventricular systolic dysfunction (LVSD) and its severity are correlated with the prognosis of cardiovascular diseases. Early detection and monitoring of LVSD are of utmost importance. Left ventricular ejection fraction (LVEF) is an essential indicator for evaluating left ventricular function in clinical practice, the current echocardiography-based evaluation method is not avaliable in primary care and difficult to achieve real-time monitoring capabilities for cardiac dysfunction. We propose a two-branch deep learning model (ECGEFNet) for calculating LVEF using electrocardiogram (ECG), which holds the potential to serve as a primary medical screening tool and facilitate long-term dynamic monitoring of cardiac functional impairments. It integrates original numerical signal and waveform plots derived from the signals in an innovative manner, enabling joint calculation of LVEF by incorporating diverse information encompassing temporal, spatial and phase aspects. To address the inadequate information interaction between the two branches and the lack of efficiency in feature fusion, we propose the fusion attention mechanism (FAT) and the two-branch feature fusion module (BFF) to guide the learning, alignment and fusion of features from both branches. We assemble a large internal dataset and perform experimental validation on it. The accuracy of cardiac dysfunction screening is 92.3%, the mean absolute error (MAE) in LVEF calculation is 4.57%. The proposed model performs well and outperforms existing basic models, and is of great significance for real-time monitoring of the degree of cardiac dysfunction.
Collapse
Affiliation(s)
- Yiqiu Qi
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China
| | - Guangyuan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Jinzhu Yang
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China.
| | - Honghe Li
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China
| | - Qi Yu
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China
| | - Mingjun Qu
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China
| | - Hongxia Ning
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Yonghuai Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Telangore H, Azad V, Sharma M, Bhurane A, Tan RS, Acharya UR. Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert-Huang and wavelet transforms with explainable vision transformer and CNN models. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108455. [PMID: 39447439 DOI: 10.1016/j.cmpb.2024.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Sudden cardiac death (SCD) is a critical health issue characterized by the sudden failure of heart function, often caused by ventricular fibrillation (VF). Early prediction of SCD is crucial to enable timely interventions. However, current methods predict SCD only a few minutes before its onset, limiting intervention time. This study aims to develop a deep learning-based model for the early prediction of SCD using electrocardiography (ECG) signals. METHODS A multimodal explainable deep learning-based model is developed to analyze ECG signals at discrete intervals ranging from 5 to 30 min before SCD onset. The raw ECG signals, 2D scalograms generated through wavelet transform and 2D Hilbert spectrum generated through Hilbert-Huang transform (HHT) of ECG signals were applied to multiple deep learning algorithms. For raw ECG, a combination of 1D-convolutional neural networks (1D-CNN) and long short-term memory networks were employed for feature extraction and temporal pattern recognition. Besides, to extract and analyze features from scalograms and Hilbert spectra, Vision Transformer (ViT) and 2D-CNN have been used. RESULTS The developed model achieved high performance, with accuracy, precision, recall and F1-score of 98.81%, 98.83%, 98.81%, and 98.81% respectively to predict SCD onset 30 min in advance. Further, the proposed model can accurately classify SCD patients and normal controls with 100% accuracy. Thus, the proposed method outperforms the existing state-of-the-art methods. CONCLUSIONS The developed model is capable of capturing diverse patterns on ECG signals recorded at multiple discrete time intervals (at 5-minute increments from 5 min to 30 min) prior to SCD onset that could discriminate for SCD. The proposed model significantly improves early SCD prediction, providing a valuable tool for continuous ECG monitoring in high-risk patients.
Collapse
Affiliation(s)
- Hardik Telangore
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India; Centre of Advanced Defence Technology, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India.
| | - Victor Azad
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India.
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India; Centre of Advanced Defence Technology, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India.
| | - Ankit Bhurane
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010, Maharashtra, India.
| | - Ru San Tan
- National Heart Centre, Singapore, 169609, Singapore; Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia; Centre for Health Research, University of Southern Queensland, Australia.
| |
Collapse
|
3
|
Ingle M, Sharma M, Verma S, Sharma N, Bhurane A, Rajendra Acharya U. Automated explainable wavelet-based sleep scoring system for a population suspected with insomnia, apnea and periodic leg movement. Med Eng Phys 2024; 130:104208. [PMID: 39160031 DOI: 10.1016/j.medengphy.2024.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024]
Abstract
Sleep is an integral and vital component of human life, contributing significantly to overall health and well-being, but a considerable number of people worldwide experience sleep disorders. Sleep disorder diagnosis heavily depends on accurately classifying sleep stages. Traditionally, this classification has been performed manually by trained sleep technologists that visually inspect polysomnography records. However, in order to mitigate the labor-intensive nature of this process, automated approaches have been developed. These automated methods aim to streamline and facilitate sleep stage classification. This study aims to classify sleep stages in a dataset comprising subjects with insomnia, PLM, and sleep apnea. The dataset consists of PSG recordings from the multi-ethnic study of atherosclerosis (MESA) cohort of the national sleep research resource (NSRR), including 2056 subjects. Among these subjects, 130 have insomnia, 39 suffer from PLM, 156 have sleep apnea, and the remaining 1731 are classified as good sleepers. This study proposes an automated computerized technique to classify sleep stages, developing a machine-learning model with explainable artificial intelligence (XAI) capabilities using wavelet-based Hjorth parameters. An optimal biorthogonal wavelet filter bank (BOWFB) has been employed to extract subbands (SBs) from 30 seconds of electroencephalogram (EEG) epochs. Three EEG channels, namely: Fz_Cz, Cz_Oz, and C4_M1, are employed to yield an optimum outcome. The Hjorth parameters extracted from SBs were then fed to different machine learning algorithms. To gain an understanding of the model, in this study, we used SHAP (Shapley Additive explanations) method. For subjects suffering from the aforementioned diseases, the model utilized features derived from all channels and employed an ensembled bagged trees (EnBT) classifier. The highest accuracy of 86.8%, 87.3%, 85.0%, 84.5%, and 83.8% is obtained for the insomniac, PLM, apniac, good sleepers and complete datasets, respectively. Using these techniques and datasets, the study aims to enhance sleep stage classification accuracy and improve understanding of sleep disorders such as insomnia, PLM, and sleep apnea.
Collapse
Affiliation(s)
- Manisha Ingle
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur-440010, Maharashtra, India.
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, and Centre of Advanced Defence Technology (CADT), Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad-380026, Gujrat, India.
| | - Shresth Verma
- Department of Electrical and Computer Science Engineering, and Centre of Advanced Defence Technology (CADT), Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad-380026, Gujrat, India.
| | - Nishant Sharma
- Department of Electrical and Computer Science Engineering, and Centre of Advanced Defence Technology (CADT), Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad-380026, Gujrat, India.
| | - Ankit Bhurane
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur-440010, Maharashtra, India.
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia.
| |
Collapse
|
4
|
Ramezani Moghadam S, Asl BM. Automatic diagnosis and localization of myocardial infarction using morphological features of ECG signal. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
5
|
Nagaraj J, Leema A. Light weight multi-branch network-based extraction and classification of myocardial infarction from 12 lead electrocardiogram images. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2023.2178608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Jothiaruna Nagaraj
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
| | - Anny Leema
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
6
|
A robust myocardial infarction localization system based on multi-branch residual shrinkage network and active learning with clustering. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Sun Q, Xu Z, Liang C, Zhang F, Li J, Liu R, Chen T, Ji B, Chen Y, Wang C. A dynamic learning-based ECG feature extraction method for myocardial infarction detection. Physiol Meas 2023; 43. [PMID: 36595315 DOI: 10.1088/1361-6579/acaa1a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Objective.Myocardial infarction (MI) is one of the leading causes of human mortality in all cardiovascular diseases globally. Currently, the 12-lead electrocardiogram (ECG) is widely used as a first-line diagnostic tool for MI. However, visual inspection of pathological ECG variations induced by MI remains a great challenge for cardiologists, since pathological changes are usually complex and slight.Approach.To have an accuracy of the MI detection, the prominent features extracted from in-depth mining of ECG signals need to be explored. In this study, a dynamic learning algorithm is applied to discover prominent features for identifying MI patients via mining the hidden inherent dynamics in ECG signals. Firstly, the distinctive dynamic features extracted from the multi-scale decomposition of dynamic modeling of the ECG signals effectively and comprehensibly represent the pathological ECG changes. Secondly, a few most important dynamic features are filtered through a hybrid feature selection algorithm based on filter and wrapper to form a representative reduced feature set. Finally, different classifiers based on the reduced feature set are trained and tested on the public PTB dataset and an independent clinical data set.Main results.Our proposed method achieves a significant improvement in detecting MI patients under the inter-patient paradigm, with an accuracy of 94.75%, sensitivity of 94.18%, and specificity of 96.33% on the PTB dataset. Furthermore, classifiers trained on PTB are verified on the test data set collected from 200 patients, yielding a maximum accuracy of 84.96%, sensitivity of 85.04%, and specificity of 84.80%.Significance.The experimental results demonstrate that our method performs distinctive dynamic feature extraction and may be used as an effective auxiliary tool to diagnose MI patients.
Collapse
Affiliation(s)
- Qinghua Sun
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China.,Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Zhanfei Xu
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Chunmiao Liang
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Fukai Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China.,Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Jiali Li
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Rugang Liu
- Department of Emergency, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Tianrui Chen
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China.,Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Bing Ji
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China.,Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Cong Wang
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China.,Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| |
Collapse
|
8
|
Continuous monitoring of acute myocardial infarction with a 3-Lead ECG system. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Khan Mamun MMR, Sherif A. Advancement in the Cuffless and Noninvasive Measurement of Blood Pressure: A Review of the Literature and Open Challenges. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010027. [PMID: 36671599 PMCID: PMC9854981 DOI: 10.3390/bioengineering10010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Hypertension is a chronic condition that is one of the prominent reasons behind cardiovascular disease, brain stroke, and organ failure. Left unnoticed and untreated, the deterioration in a health condition could even result in mortality. If it can be detected early, with proper treatment, undesirable outcomes can be avoided. Until now, the gold standard is the invasive way of measuring blood pressure (BP) using a catheter. Additionally, the cuff-based and noninvasive methods are too cumbersome or inconvenient for frequent measurement of BP. With the advancement of sensor technology, signal processing techniques, and machine learning algorithms, researchers are trying to find the perfect relationships between biomedical signals and changes in BP. This paper is a literature review of the studies conducted on the cuffless noninvasive measurement of BP using biomedical signals. Relevant articles were selected using specific criteria, then traditional techniques for BP measurement were discussed along with a motivation for cuffless measurement use of biomedical signals and machine learning algorithms. The review focused on the progression of different noninvasive cuffless techniques rather than comparing performance among different studies. The literature survey concluded that the use of deep learning proved to be the most accurate among all the cuffless measurement techniques. On the other side, this accuracy has several disadvantages, such as lack of interpretability, computationally extensive, standard validation protocol, and lack of collaboration with health professionals. Additionally, the continuing work by researchers is progressing with a potential solution for these challenges. Finally, future research directions have been provided to encounter the challenges.
Collapse
Affiliation(s)
| | - Ahmed Sherif
- School of Computing Sciences and Computer Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
10
|
Multilevel hybrid accurate handcrafted model for myocardial infarction classification using ECG signals. INT J MACH LEARN CYB 2022; 14:1651-1668. [PMID: 36467277 PMCID: PMC9702788 DOI: 10.1007/s13042-022-01718-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
Myocardial infarction (MI) is detected using electrocardiography (ECG) signals. Machine learning (ML) models have been used for automated MI detection on ECG signals. Deep learning models generally yield high classification performance but are computationally intensive. We have developed a novel multilevel hybrid feature extraction-based classification model with low time complexity for MI classification. The study dataset comprising 12-lead ECGs belonging to one healthy and 10 MI classes were downloaded from a public ECG signal databank. The model architecture comprised multilevel hybrid feature extraction, iterative feature selection, classification, and iterative majority voting (IMV). In the hybrid handcrafted feature (HHF) generation phase, both textural and statistical feature extraction functions were used to extract features from ECG beats but only at a low level. A new pooling-based multilevel decomposition model was presented to enable them to create features at a high level. This model used average and maximum pooling to create decomposed signals. Using these pooling functions, an unbalanced tree was obtained. Therefore, this model was named multilevel unbalanced pooling tree transformation (MUPTT). On the feature extraction side, two extractors (functions) were used to generate both statistical and textural features. To generate statistical features, 20 commonly used moments were used. A new, improved symmetric binary pattern function was proposed to generate textural features. Both feature extractors were applied to the original MI signal and the decomposed signals generated by the MUPTT. The most valuable features from among the extracted feature vectors were selected using iterative neighborhood component analysis (INCA). In the classification phase, a one-dimensional nearest neighbor classifier with ten-fold cross-validation was used to obtain lead-wise results. The computed lead-wise results derived from all 12 leads of the same beat were input to the IMV algorithm to generate ten voted results. The most representative was chosen using a greedy technique to calculate the overall classification performance of the model. The HHF-MUPTT-based ECG beat classification model attained excellent performance, with the best lead-wise accuracy of 99.85% observed in Lead III and 99.94% classification accuracy using the IMV algorithm. The results confirmed the high MI classification ability of the presented computationally lightweight HHF-MUPTT-based model.
Collapse
|
11
|
Intelligent Recognition Algorithm of Multiple Myocardial Infarction Based on Morphological Feature Extraction. Processes (Basel) 2022. [DOI: 10.3390/pr10112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Myocardial infarction is a type of heart disease marked by rapid progression and high mortality. In this paper, a novel intelligent recognition algorithm of multiple myocardial infarctions using a bidirectional long short-term memory (BiLSTM) neural network classification was proposed. This algorithm was based on morphological feature extraction, which can greatly improve the diagnostic efficiency of doctors for different kinds of myocardial infarction diseases. The algorithm includes noise reduction and beat segmentation of electrocardiogram (ECG) signals from the Physikalisch-Technische Bundesanstalt (PTB) database. According to the medical diagnosis guide, the distance feature of the whole waveform and the amplitude feature of the branch lead waveform are extracted. According to the extracted features, the long short-term memory network (LSTM) and the BiLSTM neural networks are built to classify and recognize heartbeats. The experimental results show that the accuracy of the morphological feature + BiLSTM algorithm in MI detection is 99.4%. At the same time, among the six common myocardial infarction diseases, the location and recognition rate of the culprit vessel is high. The sensitivity, specificity, PPV, NPV, and F1 score parameters all reach more than 98.4%, and the kappa coefficient also reaches 0.983, while the overall accuracy reaches 98.6%. The accuracy of this algorithm is improved by at least 1% compared with that of other existing algorithms. Thus, this study exhibits a very important clinical application value.
Collapse
|
12
|
A Robustness Evaluation of Machine Learning Algorithms for ECG Myocardial Infarction Detection. J Clin Med 2022; 11:jcm11174935. [PMID: 36078865 PMCID: PMC9456488 DOI: 10.3390/jcm11174935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
An automatic electrocardiogram (ECG) myocardial infarction detection system needs to satisfy several requirements to be efficient in real-world practice. These requirements, such as reliability, less complexity, and high performance in decision-making, remain very important in a realistic clinical environment. In this study, we investigated an automatic ECG myocardial infarction detection system and presented a new approach to evaluate its robustness and durability performance in classifying the myocardial infarction (with no feature extraction) under different noise types. We employed three well-known supervised machine learning models: support vector machine (SVM), k-nearest neighbors (KNN), and random forest (RF), and tested the performance and robustness of these techniques in classifying normal (NOR) and myocardial infarction (MI) using real ECG records from the PTB database after normalization and segmentation of the data, with a suggested inter-patient paradigm separation as well as noise from the MIT-BIH noise stress test database (NSTDB). Finally, we measured four metrics: accuracy, precision, recall, and F1-score. The simulation revealed that all of the models performed well, with values of over 0.50 at lower SNR levels, in terms of all the metrics investigated against different types of noise, indicating that they are encouraging and acceptable under extreme noise situations are are thus considered sustainable and robust models for specific forms of noise. All of the methods tested could be used as ECG myocardial infarction detection tools in real-world practice under challenging circumstances.
Collapse
|
13
|
An Automated Wavelet-Based Sleep Scoring Model Using EEG, EMG, and EOG Signals with More Than 8000 Subjects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127176. [PMID: 35742426 PMCID: PMC9223057 DOI: 10.3390/ijerph19127176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 01/16/2023]
Abstract
Human life necessitates high-quality sleep. However, humans suffer from a lower quality of life because of sleep disorders. The identification of sleep stages is necessary to predict the quality of sleep. Manual sleep-stage scoring is frequently conducted through sleep experts’ visually evaluations of a patient’s neurophysiological data, gathered in sleep laboratories. Manually scoring sleep is a tough, time-intensive, tiresome, and highly subjective activity. Hence, the need of creating automatic sleep-stage classification has risen due to the limitations imposed by manual sleep-stage scoring methods. In this study, a novel machine learning model is developed using dual-channel unipolar electroencephalogram (EEG), chin electromyogram (EMG), and dual-channel electrooculgram (EOG) signals. Using an optimum orthogonal filter bank, sub-bands are obtained by decomposing 30 s epochs of signals. Tsallis entropies are then calculated from the coefficients of these sub-bands. Then, these features are fed an ensemble bagged tree (EBT) classifier for automated sleep classification. We developed our automated sleep classification model using the Sleep Heart Health Study (SHHS) database, which contains two parts, SHHS-1 and SHHS-2, containing more than 8455 subjects with more than 75,000 h of recordings. The proposed model separated three classes if sleep: rapid eye movement (REM), non-REM, and wake, with a classification accuracy of 90.70% and 91.80% using the SHHS-1 and SHHS-2 datasets, respectively. For the five-class problem, the model produces a classification accuracy of 84.3% and 86.3%, corresponding to the SHHS-1 and SHHS-2 databases, respectively, to classify wake, N1, N2, N3, and REM sleep stages. The model acquired Cohen’s kappa (κ) coefficients as 0.838 with SHHS-1 and 0.86 with SHHS-2 for the three-class classification problem. Similarly, the model achieved Cohen’s κ of 0.7746 for SHHS-1 and 0.8007 for SHHS-2 in five-class classification tasks. The model proposed in this study has achieved better performance than the best existing methods. Moreover, the model that has been proposed has been developed to classify sleep stages for both good sleepers as well as patients suffering from sleep disorders. Thus, the proposed wavelet Tsallis entropy-based model is robust and accurate and may help clinicians to comprehend and interpret sleep stages efficiently.
Collapse
|
14
|
Anand A, Kadian T, Shetty MK, Gupta A. Explainable AI decision model for ECG data of cardiac disorders. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Rai HM, Chatterjee K. Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial infarction using big ECG data. APPL INTELL 2022; 52:5366-5384. [DOI: 10.1007/s10489-021-02696-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
|
16
|
Javeed A, Khan SU, Ali L, Ali S, Imrana Y, Rahman A. Machine Learning-Based Automated Diagnostic Systems Developed for Heart Failure Prediction Using Different Types of Data Modalities: A Systematic Review and Future Directions. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9288452. [PMID: 35154361 PMCID: PMC8831075 DOI: 10.1155/2022/9288452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 12/13/2022]
Abstract
One of the leading causes of deaths around the globe is heart disease. Heart is an organ that is responsible for the supply of blood to each part of the body. Coronary artery disease (CAD) and chronic heart failure (CHF) often lead to heart attack. Traditional medical procedures (angiography) for the diagnosis of heart disease have higher cost as well as serious health concerns. Therefore, researchers have developed various automated diagnostic systems based on machine learning (ML) and data mining techniques. ML-based automated diagnostic systems provide an affordable, efficient, and reliable solutions for heart disease detection. Various ML, data mining methods, and data modalities have been utilized in the past. Many previous review papers have presented systematic reviews based on one type of data modality. This study, therefore, targets systematic review of automated diagnosis for heart disease prediction based on different types of modalities, i.e., clinical feature-based data modality, images, and ECG. Moreover, this paper critically evaluates the previous methods and presents the limitations in these methods. Finally, the article provides some future research directions in the domain of automated heart disease detection based on machine learning and multiple of data modalities.
Collapse
Affiliation(s)
- Ashir Javeed
- Aging Research Center, Karolinska Institutet, Sweden
| | - Shafqat Ullah Khan
- Department of Electrical Engineering, University of Science and Technology Bannu, Pakistan
| | - Liaqat Ali
- Department of Electronics, University of Buner, Buner, Pakistan
| | - Sardar Ali
- School of Engineering and Applied Sciences, Isra University Islamabad Campus, Pakistan
| | - Yakubu Imrana
- School of Engineering, University of Development Studies, Tamale, Ghana
- School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Atiqur Rahman
- Department of Computer Science, University of Science and Technology Bannu, Pakistan
| |
Collapse
|
17
|
Cao Y, Liu W, Zhang S, Xu L, Zhu B, Cui H, Geng N, Han H, Greenwald SE. Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism. Front Physiol 2022; 13:783184. [PMID: 35153827 PMCID: PMC8832050 DOI: 10.3389/fphys.2022.783184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Myocardial infarction (MI) is one of the most common cardiovascular diseases, frequently resulting in death. Early and accurate diagnosis is therefore important, and the electrocardiogram (ECG) is a simple and effective method for achieving this. However, it requires assessment by a specialist; so many recent works have focused on the automatic assessment of ECG signals. METHODS For the detection and localization of MI, deep learning models have been proposed, but the diagnostic accuracy of this approaches still need to be improved. Moreover, with deep learning methods the way in which a given result was achieved lacks interpretability. In this study, ECG data was obtained from the PhysioBank open access database, and was analyzed as follows. Firstly, the 12-lead ECG signal was preprocessed to identify each beat and obtain each heart interval. Secondly, a multi-scale deep learning model combined with a residual network and attention mechanism was proposed, where the input was the 12-lead ECG recording. Through the SENet model and the Grad-CAM algorithm, the weighting of each lead was calculated and visualized. Using existing knowledge of the way in which different types of MI gave characteristic patterns in specific ECG leads, the model was used to provisionally diagnose the type of MI according to the characteristics of each of the 12 ECG leads. RESULTS Ten types of MI anterior, anterior lateral, anterior septal, inferior, inferior lateral, inferior posterior, inferior posterior lateral, lateral, posterior, and posterior lateral were diagnosed. The average accuracy, sensitivity, and specificity for MI detection of all lesion types was 99.98, 99.94, and 99.98%, respectively; and the average accuracy, sensitivity, and specificity for MI localization was 99.79, 99.88, and 99.98%, respectively. CONCLUSION When compared to existing models based on traditional machine learning methods, convolutional neural networks and recurrent neural networks, the results showed that the proposed model had better diagnostic performance, being superior in accuracy, sensitivity, and specificity.
Collapse
Affiliation(s)
- Yang Cao
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Wenyan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shuang Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Medical Image Computing, Ministry of Education, Shenyang, China
- Neusoft Research of Intelligent Healthcare Technology, Co., Ltd., Shenyang, China
| | - Baofeng Zhu
- Neusoft Research of Intelligent Healthcare Technology, Co., Ltd., Shenyang, China
| | - Huiying Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Ning Geng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongguang Han
- Department of Cardiac Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Stephen E. Greenwald
- Barts and the London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
18
|
Cheng J, Zou Q, Zhao Y. ECG signal classification based on deep CNN and BiLSTM. BMC Med Inform Decis Mak 2021; 21:365. [PMID: 34963455 PMCID: PMC8715576 DOI: 10.1186/s12911-021-01736-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Background Currently, cardiovascular disease has become a major disease endangering human health, and the number of such patients is growing. Electrocardiogram (ECG) is an important basis for {medical doctors to diagnose the cardiovascular disease, which can truly reflect the health of the heart. In this context, the contradiction between the lack of medical resources and the surge in the number of patients has become increasingly prominent. The use of computer-aided diagnosis of cardiovascular disease has become particularly important, so the study of ECG automatic classification method has a strong practical significance. Methods This article proposes a new method for automatic identification and classification of ECG.We have developed a dense heart rhythm network that combines a 24-layer Deep Convolutional Neural Network (DCNN) and Bidirectional Long Short-Term Memory (BiLSTM) to deeply mine the hierarchical and time-sensitive features of ECG data. Three different sizes of convolution kernels (32, 64 and 128) are used to mine the detailed features of the ECG signal, and the original ECG is filtered using a combination of wavelet transform and median filtering to eliminate the influence of noise on the signal. A new loss function is proposed to control the fluctuation of loss during the training process, and convergence mapping of the tan function in the range of 0–1 is employed to better reflect the model training loss and correct the optimization direction in time. Results We applied the dataset provided by the 2017 PhysioNet/CINC challenge for verification. The experiment adopted ten-fold cross validation,and obtained an accuracy rate of 89.3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% and an F1 score of 0.891. Conclusions This article proposes its own method in the aspects of ECG data preprocessing, feature extraction and loss function design. Compared with the existing methods, this method improves the accuracy of automatic ECG classification and is helpful for clinical diagnosis and self-monitoring of atrial fibrillation.
Collapse
Affiliation(s)
- Jinyong Cheng
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qingxu Zou
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yunxiang Zhao
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
19
|
Interpretable Detection and Location of Myocardial Infarction Based on Ventricular Fusion Rule Features. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4123471. [PMID: 34676061 PMCID: PMC8526260 DOI: 10.1155/2021/4123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/22/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022]
Abstract
Myocardial infarction (MI) is one of the most common cardiovascular diseases threatening human life. In order to accurately distinguish myocardial infarction and have a good interpretability, the classification method that combines rule features and ventricular activity features is proposed in this paper. Specifically, according to the clinical diagnosis rule and the pathological changes of myocardial infarction on the electrocardiogram, the local information extracted from the Q wave, ST segment, and T wave is computed as the rule feature. All samples of the QT segment are extracted as ventricular activity features. Then, in order to reduce the computational complexity of the ventricular activity features, the effects of Discrete Wavelet Transform (DWT), Principal Component Analysis (PCA), and Locality Preserving Projections (LPP) on the extracted ventricular activity features are compared. Combining rule features and ventricular activity features, all the 12 leads features are fused as the ultimate feature vector. Finally, eXtreme Gradient Boosting (XGBoost) is used to identify myocardial infarction, and the overall accuracy rate of 99.86% is obtained on the Physikalisch-Technische Bundesanstalt (PTB) database. This method has a good medical diagnosis basis while improving the accuracy, which is very important for clinical decision-making.
Collapse
|
20
|
Xiang T, Ji N, Clifton DA, Lu L, Zhang YT. Interactive Effects of Heart Rate Variability and P-QRS-T on the Power Density Spectra of ECG Signals. IEEE J Biomed Health Inform 2021; 25:4163-4174. [PMID: 34357872 DOI: 10.1109/jbhi.2021.3100425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Different from the traditional methods of assessing the cardiac activities through heart rhythm statistics or P-QRS-T complexes separately, this study demonstrates their interactive effects on the power density spectrum (PDS) of ECG signal with applications for the diagnosis of ST-segment elevation myocardial infarction (STEMI) diseases. Firstly, a mathematical model of the PDS of ECG signal with a random pacing pulse train (PPT) mimicking S-A node firings was derived. Secondly, an experimental PDS analysis was performed on clinical ECG signals from 49 STEMI patients and 42 healthy subjects in PTB Diagnostic Database. It was found that besides the interactive effects which are consistent between theoretical and experimental results, the ECG PDSs of STEMI patients exhibited consistently significant power shift towards lower frequency range in ST-elevated leads in comparison with those of reference leads and leads of health subjects with the highest median frequency shift ratios at 51.39 12.94% found in anterior MI. Thirdly, the results of ECG simulation with systematic changes in PPT firing statistics over various lengths of ECG data ranging from 10s to 60 mins revealed that the mean and median frequency parameters were less affected by the heart rhythm statistics and the data length but more depended on the alterations of P-QRS-T complexes, which were further confirmed on 33 more STEMI patients in European ST-T Database, demonstrating that the frequency indexes could be potentially used as alternative indicators for STEMI diagnosis even with ultra-short-term ECG recordings suitable for wearable and mobile health applications in living-free environments.
Collapse
|
21
|
Near real-time single-beat myocardial infarction detection from single-lead electrocardiogram using Long Short-Term Memory Neural Network. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Sharma M, Rajput JS, Tan RS, Acharya UR. Automated Detection of Hypertension Using Physiological Signals: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5838. [PMID: 34072304 PMCID: PMC8198170 DOI: 10.3390/ijerph18115838] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023]
Abstract
Arterial hypertension (HT) is a chronic condition of elevated blood pressure (BP), which may cause increased incidence of cardiovascular disease, stroke, kidney failure and mortality. If the HT is diagnosed early, effective treatment can control the BP and avert adverse outcomes. Physiological signals like electrocardiography (ECG), photoplethysmography (PPG), heart rate variability (HRV), and ballistocardiography (BCG) can be used to monitor health status but are not directly correlated with BP measurements. The manual detection of HT using these physiological signals is time consuming and prone to human errors. Hence, many computer-aided diagnosis systems have been developed. This paper is a systematic review of studies conducted on the automated detection of HT using ECG, HRV, PPG and BCG signals. In this review, we have identified 23 studies out of 250 screened papers, which fulfilled our eligibility criteria. Details of the study methods, physiological signal studied, database used, various nonlinear techniques employed, feature extraction, and diagnostic performance parameters are discussed. The machine learning and deep learning based methods based on ECG and HRV signals have yielded the best performance and can be used for the development of computer-aided diagnosis of HT. This work provides insights that may be useful for the development of wearable for continuous cuffless remote monitoring of BP based on ECG and HRV signals.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India;
| | - Jaypal Singh Rajput
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India;
| | - Ru San Tan
- National Heart Centre, Singapore 639798, Singapore;
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 639798, Singapore;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, SUSS, Singapore 599494, Singapore
| |
Collapse
|
23
|
Jahmunah V, Ng EYK, San TR, Acharya UR. Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals. Comput Biol Med 2021; 134:104457. [PMID: 33991857 DOI: 10.1016/j.compbiomed.2021.104457] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
Cardiovascular diseases (CVDs) are main causes of death globally with coronary artery disease (CAD) being the most important. Timely diagnosis and treatment of CAD is crucial to reduce the incidence of CAD complications like myocardial infarction (MI) and ischemia-induced congestive heart failure (CHF). Electrocardiogram (ECG) signals are most commonly employed as the diagnostic screening tool to detect CAD. In this study, an automated system (AS) was developed for the automated categorization of electrocardiogram signals into normal, CAD, myocardial infarction (MI) and congestive heart failure (CHF) classes using convolutional neural network (CNN) and unique GaborCNN models. Weight balancing was used to balance the imbalanced dataset. High classification accuracies of more than 98.5% were obtained by the CNN and GaborCNN models respectively, for the 4-class classification of normal, coronary artery disease, myocardial infarction and congestive heart failure classes. GaborCNN is a more preferred model due to its good performance and reduced computational complexity as compared to the CNN model. To the best of our knowledge, this is the first study to propose GaborCNN model for automated categorizing of normal, coronary artery disease, myocardial infarction and congestive heart failure classes using ECG signals. Our proposed system is equipped to be validated with bigger database and has the potential to aid the clinicians to screen for CVDs using ECG signals.
Collapse
Affiliation(s)
- V Jahmunah
- Department of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - E Y K Ng
- Department of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | | | - U Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore; Biomedical Engineering, School of Social Science and Technology, Singapore University of Social Sciences, Singapore; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan; Department Bioinformatics and Medical Engineering, Asia University, Taiwan; School of Management and Enterprise, University of Southern Queensland, Australia.
| |
Collapse
|
24
|
Sharma M, Tiwari J, Acharya UR. Automatic Sleep-Stage Scoring in Healthy and Sleep Disorder Patients Using Optimal Wavelet Filter Bank Technique with EEG Signals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3087. [PMID: 33802799 PMCID: PMC8002569 DOI: 10.3390/ijerph18063087] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/20/2023]
Abstract
Sleep stage classification plays a pivotal role in effective diagnosis and treatment of sleep related disorders. Traditionally, sleep scoring is done manually by trained sleep scorers. The analysis of electroencephalogram (EEG) signals recorded during sleep by clinicians is tedious, time-consuming and prone to human errors. Therefore, it is clinically important to score sleep stages using machine learning techniques to get accurate diagnosis. Several studies have been proposed for automated detection of sleep stages. However, these studies have employed only healthy normal subjects (good sleepers). The proposed study focuses on the automated sleep-stage scoring of subjects suffering from seven different kind of sleep disorders such as insomnia, bruxism, narcolepsy, nocturnal frontal lobe epilepsy (NFLE), periodic leg movement (PLM), rapid eye movement (REM) behavioural disorder and sleep-disordered breathing as well as normal subjects. The open source physionet's cyclic alternating pattern (CAP) sleep database is used for this study. The EEG epochs are decomposed into sub-bands using a new class of optimized wavelet filters. Two EEG channels, namely F4-C4 and C4-A1, combined are used for this work as they can provide more insights into the changes in EEG signals during sleep. The norm features are computed from six sub-bands coefficients of optimal wavelet filter bank and fed to various supervised machine learning classifiers. We have obtained the highest classification performance using an ensemble of bagged tree (EBT) classifier with 10-fold cross validation. The CAP database comprising of 80 subjects is divided into ten different subsets and then ten different sleep-stage scoring tasks are performed. Since, the CAP database is unbalanced with different duration of sleep stages, the balanced dataset also has been created using over-sampling and under-sampling techniques. The highest average accuracy of 85.3% and Cohen's Kappa coefficient of 0.786 and accuracy of 92.8% and Cohen's Kappa coefficient of 0.915 are obtained for unbalanced and balanced databases, respectively. The proposed method can reliably classify the sleep stages using single or dual channel EEG epochs of 30 s duration instead of using multimodal polysomnography (PSG) which are generally used for sleep-stage scoring. Our developed automated system is ready to be tested with more sleep EEG data and can be employed in various sleep laboratories to evaluate the quality of sleep in various sleep disorder patients and normal subjects.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad 380026, India;
| | - Jainendra Tiwari
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad 380026, India;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- School of Management and Enterprise, University of Southern Queensland, Springfield 4300, Australia
| |
Collapse
|
25
|
Rueda C, Larriba Y, Lamela A. The hidden waves in the ECG uncovered revealing a sound automated interpretation method. Sci Rep 2021; 11:3724. [PMID: 33580164 PMCID: PMC7881027 DOI: 10.1038/s41598-021-82520-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
A novel approach for analysing cardiac rhythm data is presented in this paper. Heartbeats are decomposed into the five fundamental P, Q, R, S and T waves plus an error term to account for artifacts in the data which provides a meaningful, physical interpretation of the heart's electric system. The morphology of each wave is concisely described using four parameters that allow all the different patterns in heartbeats to be characterized and thus differentiated This multi-purpose approach solves such questions as the extraction of interpretable features, the detection of the fiducial marks of the fundamental waves, or the generation of synthetic data and the denoising of signals. Yet the greatest benefit from this new discovery will be the automatic diagnosis of heart anomalies as well as other clinical uses with great advantages compared to the rigid, vulnerable and black box machine learning procedures, widely used in medical devices. The paper shows the enormous potential of the method in practice; specifically, the capability to discriminate subjects, characterize morphologies and detect the fiducial marks (reference points) are validated numerically using simulated and real data, thus proving that it outperforms its competitors.
Collapse
Affiliation(s)
- Cristina Rueda
- Department of Statistics and Operations Research, Universidad de Valladolid, Valladolid, Spain.
| | - Yolanda Larriba
- Department of Statistics and Operations Research, Universidad de Valladolid, Valladolid, Spain
| | - Adrian Lamela
- Department of Statistics and Operations Research, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
26
|
Sharma M, Dhiman HS, Acharya UR. Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ECG signals. Comput Biol Med 2021; 131:104246. [PMID: 33631498 DOI: 10.1016/j.compbiomed.2021.104246] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Sleep is a fundamental human physiological activity required for adequate working of the human body. Sleep disorders such as sleep movement disorders, nocturnal front lobe epilepsy, insomnia, and narcolepsy are caused due to low sleep quality. Insomnia is one such sleep disorder where a person has difficulty in getting quality sleep. There is no definitive test to identify insomnia; hence it is essential to develop an automated system to identify it accurately. A few automated methods have been proposed to identify insomnia using either polysomnogram (PSG) or electroencephalogram (EEG) signals. To the best of our knowledge, we are the first to automatically detect insomnia using only electrocardiogram (ECG) signals without combining them with any other physiological signals. In the proposed study, an optimal antisymmetric biorthogonal wavelet filter bank (ABWFB) has been used, which is designed to minimize the joint duration-bandwidth localization (JDBL) of the underlying filters. The L1-norm feature is computed from the various wavelet sub-bands coefficients of ECG signals. The L1 norm features are fed to various supervised machine learning classifiers for the automated detection of insomnia. In this work, ECG recordings of seven insomnia patients and six normal subjects are used from the publicly available cyclic alternating pattern (CAP) sleep database. We created ten different subsets of ECG signals based on annotations of sleep-stages, namely wake (W), S1, S2, S3, S4, rapid eye moment (REM), light sleep stage (LSS), slow-wave sleep (SWS), non-rapid eye movement (NREM) and W + S1+S2+S3+S4+REM for the automated identification of insomnia. Our proposed ECG-based system obtained the highest classification accuracy of 97.87%, F1-score of 97.39%, and Cohen's kappa value of 0.9559 for K-nearest neighbour (KNN) with the ten-fold cross-validation strategy using ECG signals corresponding to the REM sleep stage. The support vector machine (SVM) yielded the highest value of 0.99 for area under the curve with the ten fold cross-validation corresponding to REM sleep stage.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Harsh S Dhiman
- Department of Electrical Engineering, Adani Institute of Infrastructure Engineering, Ahmedabad, India.
| | - U Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan; School of Management and Enterprise University of Southern Queensland, Springfield, Australia.
| |
Collapse
|
27
|
Sharma M, Acharya UR. Automated detection of schizophrenia using optimal wavelet-based l 1 norm features extracted from single-channel EEG. Cogn Neurodyn 2021; 15:661-674. [PMID: 34367367 DOI: 10.1007/s11571-020-09655-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
Schizophrenia (SZ) is a mental disorder, which affects the ability of human thinking, memory, and way of living. Manual screening of SZ patients is tedious, laborious and prone to human errors. Hence, we developed a computer-aided diagnosis (CAD) system to diagnose SZ patients accurately using single-channel electroencephalogram (EEG) signals. The EEG signals are nonlinear and non-stationary. Hence, we have used wavelet-based features to capture the hidden non-stationary nature present in the signal. First, the EEG signals are subjected to the the wavelet decomposition through six iterations, which yields seven sub-bands. The l 1 norm is computed for each sub-band. The extracted norm features are disseminated to various classification algorithms. We have obtained the highest accuracy of 99.21% and 97.2% using K-nearest neighbor classifiers with ten-fold and leave-one-subject-out cross-validations. The developed single-channel EEG wavelet-based CAD model can help the clinicians to confirm the outcome of their manual screening and obtain an accurate diagnosis.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad, India
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore.,Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan, ROC
| |
Collapse
|
28
|
Rai HM, Chatterjee K, Dubey A, Srivastava P. Myocardial Infarction Detection Using Deep Learning and Ensemble Technique from ECG Signals. LECTURE NOTES IN NETWORKS AND SYSTEMS 2021:717-730. [DOI: 10.1007/978-981-16-0733-2_51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
|
29
|
Noh YH, Seo JY, Jeong DU. Development of a Knowledge Discovery Computing based wearable ECG monitoring system. INFORMATION TECHNOLOGY & MANAGEMENT 2020. [DOI: 10.1007/s10799-020-00318-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
A Robust Multilevel DWT Densely Network for Cardiovascular Disease Classification. SENSORS 2020; 20:s20174777. [PMID: 32847070 PMCID: PMC7506881 DOI: 10.3390/s20174777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Immediate and accurate diagnoses of cardiovascular disease are essential for saving lives. Although most of the previously reported works have tried to classify heartbeats accurately based on the intra-patient paradigm, they suffer from category imbalance issues since abnormal heartbeats appear much less regularly than normal heartbeats. Furthermore, most existing methods rely on data preprocessing steps, such as noise removal and R-peak location. In this study, we present a robust classification system using a multilevel discrete wavelet transform densely network (MDD-Net) for the accurate detection of normal, coronary artery disease (CAD), myocardial infarction (MI) and congestive heart failure (CHF). First, the raw ECG signals from different databases are divided into same-size segments using an original adaptive sample frequency segmentation algorithm (ASFS). Then, the fusion features are extracted from the MDD-Net to achieve great classification performance. We evaluated the proposed method considering the intra-patient and inter-patient paradigms. The average accuracy, positive predictive value, sensitivity and specificity were 99.74%, 99.09%, 98.67% and 99.83%, respectively, under the intra-patient paradigm, and 96.92%, 92.17%, 89.18% and 97.77%, respectively, under the inter-patient paradigm. Moreover, the experimental results demonstrate that our model is robust to noise and class imbalance issues.
Collapse
|
31
|
Rajput JS, Sharma M, Tan RS, Acharya UR. Automated detection of severity of hypertension ECG signals using an optimal bi-orthogonal wavelet filter bank. Comput Biol Med 2020; 123:103924. [DOI: 10.1016/j.compbiomed.2020.103924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
|
32
|
Swain SS, Patra D, Singh YO. Automated detection of myocardial infarction in ECG using modified Stockwell transform and phase distribution pattern from time-frequency analysis. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
George ST, Subathra M, Sairamya N, Susmitha L, Joel Premkumar M. Classification of epileptic EEG signals using PSO based artificial neural network and tunable-Q wavelet transform. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Alghamdi A, Hammad M, Ugail H, Abdel-Raheem A, Muhammad K, Khalifa HS, Abd El-Latif AA. Detection of myocardial infarction based on novel deep transfer learning methods for urban healthcare in smart cities. MULTIMEDIA TOOLS AND APPLICATIONS 2020; 83:14913-14934. [DOI: 10.1007/s11042-020-08769-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 02/17/2020] [Indexed: 09/02/2023]
|
35
|
Han C, Shi L. ML-ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 185:105138. [PMID: 31669959 DOI: 10.1016/j.cmpb.2019.105138] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Myocardial infarction (MI) is one of the most threatening cardiovascular diseases for human beings, which can be diagnosed by electrocardiogram (ECG). Automated detection methods based on ECG focus on extracting handcrafted features. However, limited by the performance of traditional methods and individual differences between patients, it's difficult for predesigned features to detect MI with high performance. METHODS The paper presents a novel method to detect and locate MI combining a multi-lead residual neural network (ML-ResNet) structure with three residual blocks and feature fusion via 12 leads ECG records. Specifically, single lead feature branch network is trained to automatically learn the representative features of different levels between different layers, which exploits local characteristics of ECG to characterize the spatial information representation. Then all the lead features are fused together as global features. To evaluate the generalization of proposed method and clinical utility, two schemes including the intra-patient scheme and inter-patient scheme are all employed. RESULTS Experimental results based on PTB (Physikalisch-Technische Bundesanstalt) database shows that our model achieves superior results with the accuracy of 95.49%, the sensitivity of 94.85%, the specificity of 97.37%, and the F1 score of 96.92% for MI detection under the inter-patient scheme compared to the state-of-the-art. By contrast, the accuracy is 99.92% and the F1 score is 99.94% based on 5-fold cross validation under the intra-patient scheme. As for five types of MI location, the proposed method also yields an average accuracy of 99.72% and F1 of 99.67% in the intra-patient scheme. CONCLUSIONS The proposed method for MI detection and location has achieved superior results compared to other detection methods. However, further promotion of the performance based on MI location for the inter-patient scheme still depends significantly on the mass data and the novel model which reflects spatial location information of different leads subtly.
Collapse
Affiliation(s)
- Chuang Han
- School of Electrical Engineering, Zhengzhou University, NO. 100 Kexue Road, Zhengzhou, Henan 450000, China
| | - Li Shi
- School of Electrical Engineering, Zhengzhou University, NO. 100 Kexue Road, Zhengzhou, Henan 450000, China; Department of Automation, Tsinghua University, Beijing, Beijing, China; Beijing National Research Center for Information Science and Technology, Beijing, Beijing, China.
| |
Collapse
|
36
|
Myocardial Infarction Detection and Localization Using Optimal Features Based Lead Specific Approach. Ing Rech Biomed 2020. [DOI: 10.1016/j.irbm.2019.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Lih OS, Jahmunah V, San TR, Ciaccio EJ, Yamakawa T, Tanabe M, Kobayashi M, Faust O, Acharya UR. Comprehensive electrocardiographic diagnosis based on deep learning. Artif Intell Med 2020; 103:101789. [PMID: 32143796 DOI: 10.1016/j.artmed.2019.101789] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 12/31/2019] [Indexed: 11/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and coronary artery disease (CAD) is a major contributor. Early-stage CAD can progress if undiagnosed and left untreated, leading to myocardial infarction (MI) that may induce irreversible heart muscle damage, resulting in heart chamber remodeling and eventual congestive heart failure (CHF). Electrocardiography (ECG) signals can be useful to detect established MI, and may also be helpful for early diagnosis of CAD. For the latter especially, the ECG perturbations can be subtle and potentially misclassified during manual interpretation and/or when analyzed by traditional algorithms found in ECG instrumentation. For automated diagnostic systems (ADS), deep learning techniques are favored over conventional machine learning techniques, due to the automatic feature extraction and selection processes involved. This paper highlights various deep learning algorithms exploited for the classification of ECG signals into CAD, MI, and CHF conditions. The Convolutional Neural Network (CNN), followed by combined CNN and Long Short-Term Memory (LSTM) models, appear to be the most useful architectures for classification. A 16-layer LSTM model was developed in our study and validated using 10-fold cross-validation. A classification accuracy of 98.5% was achieved. Our proposed model has the potential to be a useful diagnostic tool in hospitals for the classification of abnormal ECG signals.
Collapse
Affiliation(s)
- Oh Shu Lih
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - V Jahmunah
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | | | | | - Toshitaka Yamakawa
- Department of Computer Science and Electrical Engineering, Kumamoto University, Japan
| | - Masayuki Tanabe
- Department of Computer Science and Electrical Engineering, Kumamoto University, Japan; International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, Japan
| | - Makiko Kobayashi
- Department of Computer Science and Electrical Engineering, Kumamoto University, Japan
| | - Oliver Faust
- Department of Engineering and Mathematics, Sheffield Hallam University, United Kingdom
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan; International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
38
|
Fang J, Wang J, Chen F, Xu Y, Zhang H, Wang Y. α7nAChR Deletion Aggravates Myocardial Infarction and Enhances Systemic Inflammatory Reaction via mTOR-Signaling-Related Autophagy. Inflammation 2020; 42:1190-1202. [PMID: 30806956 DOI: 10.1007/s10753-019-00979-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) has been previously reported to play an alleviative role in myocardial infarction (MI). In this study, we investigated its specific mechanism. α7nAChR-/- mice and its control (α7nAChR+/+) were used for the study of α7nAChR. Left anterior descending coronary artery occlusion was conducted for the creation of mice MI model and lipopolysaccharide (LPS) was used as inflammatory stressor in murine peritoneal macrophages. Triphenyltetrazolium chloride (TTC) staining and echocardiography was used for the detection of infarct size and cardiac function, respectively. Western blot was conducted for the testing of autophagy-related proteins and enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) was used for the testing of proinflammatory cytokines. Rapamycin was used for the induction of autophagy through inhibiting mammalian target of rapamycin (mTOR)-related signaling. We found that knocking out α7nAChR enhanced the cardiac infarct size and damaged cardiac function in MI. α7nAChR deficiency increased the levels of several proinflammatory cytokines in serum and spleen from MI mice as well as murine macrophages under inflammatory stress. α7nAChR deletion decreased the level of autophagy in spleen from MI mice and macrophages under inflammatory stress. Rapamycin alleviated the cardiac function and systemic inflammatory reaction in MI mice as well as inflammatory reaction in macrophages under inflammatory stress, which was attenuated by knocking out α7nAChR. Our current study investigated the mechanism of α7nAChR-mediated cardio-protective and anti-inflammatory effect related to mTOR-related autophagy, which might provide a novel insight in the treatment of MI.
Collapse
Affiliation(s)
- Jinyan Fang
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 HuanSha Road, Hangzhou, Zhejiang, China
| | - Jiawei Wang
- Department of Endocrinology, The 903th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Fanghui Chen
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 HuanSha Road, Hangzhou, Zhejiang, China
| | - Yuansheng Xu
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 HuanSha Road, Hangzhou, Zhejiang, China
| | - Hao Zhang
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 HuanSha Road, Hangzhou, Zhejiang, China
| | - Yi Wang
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 HuanSha Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Sharma M, Patel S, Choudhary S, Acharya UR. Automated Detection of Sleep Stages Using Energy-Localized Orthogonal Wavelet Filter Banks. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-04197-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Rajput JS, Sharma M, Acharya UR. Hypertension Diagnosis Index for Discrimination of High-Risk Hypertension ECG Signals Using Optimal Orthogonal Wavelet Filter Bank. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4068. [PMID: 31652712 PMCID: PMC6861956 DOI: 10.3390/ijerph16214068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Hypertension (HT) is an extreme increment in blood pressure that can prompt a stroke, kidney disease, and heart attack. HT does not show any symptoms at the early stage, but can lead to various cardiovascular diseases. Hence, it is essential to identify it at the beginning stages. It is tedious to analyze electrocardiogram (ECG) signals visually due to their low amplitude and small bandwidth. Hence, to avoid possible human errors in the diagnosis of HT patients, an automated ECG-based system is developed. This paper proposes the computerized segregation of low-risk hypertension (LRHT) and high-risk hypertension (HRHT) using ECG signals with an optimal orthogonal wavelet filter bank (OWFB) system. The HRHT class is comprised of patients with myocardial infarction, stroke, and syncope ECG signals. The ECG-data are acquired from physionet's smart health for accessing risk via ECG event (SHAREE) database, which contains recordings of a total 139 subjects. First, ECG signals are segmented into epochs of 5 min. The segmented epochs are then decomposed into six wavelet sub-bands (WSBs) using OWFB. We extract the signal fractional dimension (SFD) and log-energy (LOGE) features from all six WSBs. Using Student's t-test ranking, we choose the high ranked WSBs of LOGE and SFD features. We develop a novel hypertension diagnosis index (HDI) using two features (SFD and LOGE) to discriminate LRHT and HRHT classes using a single numeric value. The performance of our developed system is found to be encouraging, and we believe that it can be employed in intensive care units to monitor the abrupt rise in blood pressure while screening the ECG signals, provided this is tested with an extensive independent database.
Collapse
Affiliation(s)
- Jaypal Singh Rajput
- Department of Electrical Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad 380026, India.
| | - Manish Sharma
- Department of Electrical Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad 380026, India.
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore.
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, 599494 Singapore, Singapore.
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
41
|
Sharma M, Singh S, Kumar A, San Tan R, Acharya UR. Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features. Comput Biol Med 2019; 115:103446. [PMID: 31627019 DOI: 10.1016/j.compbiomed.2019.103446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 02/01/2023]
Abstract
Malignant arrhythmia can lead to sudden cardiac death (SCD). Shockable arrhythmia can be terminated with device electrical shock therapies. Ventricular-tachycardia (VT) and ventricular fibrillation (VF) are responsive to electrical anti-tachycardia pacing therapy and defibrillation which help to restore normal electrical and mechanical function of the heart. In contrast, non-shockable arrhythmia like asystole and bradycardia are not responsive to electric shock therapy. Distinguishing between shockable and non-shockable arrhythmia is an important diagnostic challenge that has practical clinical relevance. It is difficult to accurately differentiate between these two types of arrhythmia by manual inspection of electrocardiogram (ECG) segments within the short time duration before triggering the device for electrical therapy. Automated defibrillators are equipped with automatic shockable arrhythmia detection algorithms based on ECG morphological features, which may possess variable diagnostic performance depending on machine models. In our work, we have designed a robust system using wavelet decomposition filter banks for extraction of features from the ECG signal and then classifying the features. We believe this method will improve the accuracy of discriminating between shockable and non-shockable arrhythmia compared with existing conventional algorithms. We used a novel three channel orthogonal wavelet filter bank, which extracted features from ECG epochs of duration 2 s to distinguish between shockable and non-shockable arrhythmia. The fuzzy, Renyi and sample entropies are extracted from the various wavelet coefficients and fed to support vector machine (SVM) classifier for automated classification. We have obtained an accuracy of 98.9%, sensitivity and specificity of 99.08% and 97.11.9%, respectively, using 10-fold cross validation. The area under the receiver operating characteristic has been found to be 0.99 with F1-score of 0.994. The system developed is more accurate than the existing algorithms. Hence, the proposed system can be employed in automated defibrillators inside and outside hospitals for emergency revival of patients suffering from SCD. These automated defibrillators can also be implanted inside the human body for automatic detection of potentially fatal shockable arrhythmia and to deliver an appropriate electric shock to the heart.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad, India.
| | - Swapnil Singh
- Department of Project Management, National Institute of Industrial Engineering, Mumbai, India
| | - Abhishek Kumar
- Department of Civil Engineering, Indian Institute of Technology, Madras, India
| | - Ru San Tan
- Department of Cardiology, National Heart Care Centre Singapore, Singapore.
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS, Singapore; International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
42
|
|
43
|
Han C, Shi L. Automated interpretable detection of myocardial infarction fusing energy entropy and morphological features. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 175:9-23. [PMID: 31104718 DOI: 10.1016/j.cmpb.2019.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/10/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE The 12 leads electrocardiogram (ECG) is an effective tool to diagnose myocardial infarction (MI) on account of its inexpensive, noninvasive and convenient. Many methodologies have been widely adopted to detect it. However, much existing method did not integrate with diagnostic logic of clinician and practical application. The aim of the paper is to provide an automated interpretable detection method of myocardial infarction. METHODS The paper presents a novel method fusing energy entropy and morphological features for MI detection via 12 leads ECG. Specifically, ECG signals are firstly decomposed by maximal overlap discrete wavelet packet transform (MODWPT), then energy entropy is calculated from the decomposed coefficients as global features. Area, kurtosis coefficient, skewness coefficient and standard deviation extracted from QRS wave and ST-T segment of ECG beat are computed as local morphological features. Combining global features based on record and local features based on beat for single lead, all the 12 leads features are fused as the ultimate feature vector. What's more, different methods including principal component analysis (PCA), linear discriminant analysis (LDA) and locality preserving projection (LPP) are employed to reduce the computational complexity and redundant information. Meanwhile, principal component features are ranked by F-value. To evaluate the proposed method, PTB (Physikalisch-Technische Bundesanstalt) database and inter-patient paradigm are employed. RESULTS Compared with different algorithms, support vector machine (SVM) using radial basis kernel function combined with 10-fold cross validation achieves the best average performance with accuracy of 99.81%, sensitivity of 99.56%, precision of 99.74% and F1 of 99.70% based on 18 features in the intra-patient paradigm. By contrast, the accuracy is 92.69% with only 22 features for the inter-patient paradigm. CONCLUSIONS The experimental results present a superior performance compared to the state-of-the-art method. Meanwhile, above approach has the characteristic of interpretability according with diagnostic logic and strategy of clinician and specific change of ECG for MI.
Collapse
Affiliation(s)
- Chuang Han
- Industrial Technology Research Institute, Zhengzhou university, Zhengzhou City, Henan, China
| | - Li Shi
- Industrial Technology Research Institute, Zhengzhou university, Zhengzhou City, Henan, China; Department of automation, Tsinghua university, Beijing City, Beijing, China.
| |
Collapse
|
44
|
Baloglu UB, Talo M, Yildirim O, Tan RS, Acharya UR. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognit Lett 2019. [DOI: 10.1016/j.patrec.2019.02.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04061-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|