1
|
Falkenberg M, Coleman JA, Dobson S, Hickey DJ, Terrill L, Ciacci A, Thomas B, Sau A, Ng FS, Zhao J, Peters NS, Christensen K. Identifying locations susceptible to micro-anatomical reentry using a spatial network representation of atrial fibre maps. PLoS One 2022; 17:e0267166. [PMID: 35737662 PMCID: PMC9223322 DOI: 10.1371/journal.pone.0267166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/03/2022] [Indexed: 11/18/2022] Open
Abstract
Micro-anatomical reentry has been identified as a potential driver of atrial fibrillation (AF). In this paper, we introduce a novel computational method which aims to identify which atrial regions are most susceptible to micro-reentry. The approach, which considers the structural basis for micro-reentry only, is based on the premise that the accumulation of electrically insulating interstitial fibrosis can be modelled by simulating percolation-like phenomena on spatial networks. Our results suggest that at high coupling, where micro-reentry is rare, the micro-reentrant substrate is highly clustered in areas where the atrial walls are thin and have convex wall morphology, likely facilitating localised treatment via ablation. However, as transverse connections between fibres are removed, mimicking the accumulation of interstitial fibrosis, the substrate becomes less spatially clustered, and the bias to forming in thin, convex regions of the atria is reduced, possibly restricting the efficacy of localised ablation. Comparing our algorithm on image-based models with and without atrial fibre structure, we find that strong longitudinal fibre coupling can suppress the micro-reentrant substrate, whereas regions with disordered fibre orientations have an enhanced risk of micro-reentry. With further development, these methods may be useful for modelling the temporal development of the fibrotic substrate on an individualised basis.
Collapse
Affiliation(s)
- Max Falkenberg
- Centre for Complexity Science, Imperial College London, London, United Kingdom
- Department of Physics, Imperial College London, London, United Kingdom
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - James A. Coleman
- Department of Physics, Imperial College London, London, United Kingdom
| | - Sam Dobson
- Department of Physics, Imperial College London, London, United Kingdom
| | - David J. Hickey
- Department of Physics, Imperial College London, London, United Kingdom
| | - Louie Terrill
- Department of Physics, Imperial College London, London, United Kingdom
| | - Alberto Ciacci
- Centre for Complexity Science, Imperial College London, London, United Kingdom
- Department of Physics, Imperial College London, London, United Kingdom
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Belvin Thomas
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Arunashis Sau
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Fu Siong Ng
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Nicholas S. Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Kim Christensen
- Centre for Complexity Science, Imperial College London, London, United Kingdom
- Department of Physics, Imperial College London, London, United Kingdom
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Ciaccio EJ, Wan EY, Saluja DS, Acharya UR, Peters NS, Garan H. Addressing challenges of quantitative methodologies and event interpretation in the study of atrial fibrillation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 178:113-122. [PMID: 31416540 PMCID: PMC6748794 DOI: 10.1016/j.cmpb.2019.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/21/2019] [Accepted: 06/14/2019] [Indexed: 05/06/2023]
Abstract
Atrial fibrillation (AF) is the commonest arrhythmia, yet the mechanisms of its onset and persistence are incompletely known. Although techniques for quantitative assessment have been investigated, there have been few attempts to integrate this information to advance disease treatment protocols. In this review, key quantitative methods for AF analysis are described, and suggestions are provided for the coordination of the available information, and to develop foci and directions for future research efforts. Quantitative biologists may have an interest in this topic in order to develop machine learning and tools for arrhythmia characterization, but they may perhaps have a minimal background in the clinical methodology and in the types of observed events and mechanistic hypotheses that have thus far been developed. We attempt to address these issues via exploration of the published literature. Although no new data is presented in this review, examples are shown of current lines of investigation, and in particular, how electrogram analysis and whole-chamber quantitative modeling of the left atrium may be useful to characterize fibrillatory patterns of activity, so as to propose avenues for more efficacious acquisition and interpretation of AF data.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
| | - Elaine Y Wan
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - Deepak S Saluja
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hasan Garan
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|