1
|
Yan ZN, Liu PR, Zhou H, Zhang JY, Liu SX, Xie Y, Wang HL, Yu JB, Zhou Y, Ni CM, Huang L, Ye ZW. Brain-computer Interaction in the Smart Era. Curr Med Sci 2024; 44:1123-1131. [PMID: 39347924 DOI: 10.1007/s11596-024-2927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
The brain-computer interface (BCI) system serves as a critical link between external output devices and the human brain. A monitored object's mental state, sensory cognition, and even higher cognition are reflected in its electroencephalography (EEG) signal. Nevertheless, unprocessed EEG signals are frequently contaminated with a variety of artifacts, rendering the analysis and elimination of impurities from the collected EEG data exceedingly challenging, not to mention the manual adjustment thereof. Over the last few decades, the rapid advancement of artificial intelligence (AI) technology has contributed to the development of BCI technology. Algorithms derived from AI and machine learning have significantly enhanced the ability to analyze and process EEG electrical signals, thereby expanding the range of potential interactions between the human brain and computers. As a result, the present BCI technology with the help of AI can assist physicians in gaining a more comprehensive understanding of their patients' physical and psychological status, thereby contributing to improvements in their health and quality of life.
Collapse
Affiliation(s)
- Zi-Neng Yan
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng-Ran Liu
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Zhou
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Yao Zhang
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Song-Xiang Liu
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Xie
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Lin Wang
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin-Bo Yu
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, 430200, China
| | - Yu Zhou
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, 430200, China
| | - Chang-Mao Ni
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, 430200, China
| | - Li Huang
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, 430200, China.
| | - Zhe-Wei Ye
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Värbu K, Muhammad N, Muhammad Y. Past, Present, and Future of EEG-Based BCI Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:3331. [PMID: 35591021 PMCID: PMC9101004 DOI: 10.3390/s22093331] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
An electroencephalography (EEG)-based brain-computer interface (BCI) is a system that provides a pathway between the brain and external devices by interpreting EEG. EEG-based BCI applications have initially been developed for medical purposes, with the aim of facilitating the return of patients to normal life. In addition to the initial aim, EEG-based BCI applications have also gained increasing significance in the non-medical domain, improving the life of healthy people, for instance, by making it more efficient, collaborative and helping develop themselves. The objective of this review is to give a systematic overview of the literature on EEG-based BCI applications from the period of 2009 until 2019. The systematic literature review has been prepared based on three databases PubMed, Web of Science and Scopus. This review was conducted following the PRISMA model. In this review, 202 publications were selected based on specific eligibility criteria. The distribution of the research between the medical and non-medical domain has been analyzed and further categorized into fields of research within the reviewed domains. In this review, the equipment used for gathering EEG data and signal processing methods have also been reviewed. Additionally, current challenges in the field and possibilities for the future have been analyzed.
Collapse
Affiliation(s)
- Kaido Värbu
- Institute of Computer Science, University of Tartu, 51009 Tartu, Estonia;
| | - Naveed Muhammad
- Institute of Computer Science, University of Tartu, 51009 Tartu, Estonia;
| | - Yar Muhammad
- Department of Computing & Games, School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK;
| |
Collapse
|