1
|
Mirjalili M, Zomorrodi R, Daskalakis ZJ, Blumberger DM, Hill SL, Rajji TK. Identifying causal neural oscillations underlying working memory. Cereb Cortex 2025; 35:bhae492. [PMID: 39758031 PMCID: PMC11795305 DOI: 10.1093/cercor/bhae492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 12/14/2024] [Indexed: 01/07/2025] Open
Abstract
Electroencephalography is instrumental in understanding neurophysiological mechanisms underlying working memory. While numerous studies have associated electroencephalography features to working memory, understanding causal relationships leads to better characterization of the neurophysiological mechanisms that are directly linked to working memory. Personalized causal modeling is a tool to discover these direct links between brain features and working memory performance. Therefore, we applied this approach to electroencephalography data from 66 adult healthy participants collected while performing a 3-back working memory task. Using graphical causal modeling, we discovered causal neural oscillations of working memory performance and compared the causal features between two groups: high and low performers. Total number of causal features in high performers was higher than low performers. Among the causal features, right temporal gamma oscillation was ~5 times (z-score = 3.87, P = 0.0001) more frequently a causal feature among high performers than low performers. However, the power of causal temporal gamma oscillation was not different between the two groups. Our findings suggest that one potential approach to improve working memory performance is to induce more causal gamma oscillations. This can be achieved by generating more local gamma entrainment over the right temporal cortex, rather than simply increasing gamma power.
Collapse
Affiliation(s)
- Mina Mirjalili
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Reza Zomorrodi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Sean L Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
2
|
Yang D, Lin W, Liu M, Zhou Y, Wang Y. Non-parametric full cross mapping (NFCM): a highly-stable measure for causal brain network and a pilot application. J Neural Eng 2025; 22:016007. [PMID: 39693739 DOI: 10.1088/1741-2552/ada0e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 12/20/2024]
Abstract
Objective.Measuring causal brain network from neurophysiological signals has recently attracted much attention in the field of neuroinformatics. Traditional data-driven algorithms are computationally time-consuming and unstable due to parameter settings.Approach.To resolve these limits, we proposed a novel parameter-free technique, called 'non-parametric full cross mapping (NFCM)'. The NFCM adapts current convergent cross-mapping concept, and makes two improvements: (1) an improved phase-space reconstruction with constant embedding parameters and (2) cross-mapping estimate of all embedding vectors on manifolds following simplex projection.Main results.Numerical experiments verify that our NFCM has the highest quantization stability even when perturbed by system noise, and its coefficient of variation is almost lower than that of the six baseline methods. The developed NFCM is finally used in stereoelectroencephalogram analysis of drug-resistant epilepsy in children (DREC). A total of 36 seizures, comprising 18 surgical successes and 18 failures, were included to explore the brain network dynamics. The average causal coupling in epileptogenic zones of successful surgery (0.81 ± 0.04) is significantly higher than that in non-epileptogenic zones (0.40 ± 0.03) withP<0.001via Mann-Whitney-U-test. While there is no significant difference among the 18 failed surgeries.Significance.The causal brain network measured by our NFCM is confirmed as a credible biomarker for localizing epileptogenic zones in DREC. These findings promise to advance precision medicine for DREC.
Collapse
Affiliation(s)
- Danni Yang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China
| | - Wentao Lin
- School of information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China
| | - Minghui Liu
- School of information Science and Technology, Fudan University, Shanghai 200433, People's Republic of China
| | - Yuanfeng Zhou
- Children's hospital of Fudan University, Shanghai, People's Republic of China
| | - Yalin Wang
- Key Laboratory of Special Functional Materials and Structural Design, Ministry of Education, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of information Science and Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
3
|
Zhang Y, Zhu H, Franz E. Physical activity indexed using table tennis skills modulates the neural dynamics of involuntary retrieval of negative memories. Exp Brain Res 2024; 243:17. [PMID: 39641833 DOI: 10.1007/s00221-024-06948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Memory intrusion is a characteristic of posttraumatic stress disorder manifesting as involuntary flashbacks of negative events. Interference of memory reconsolidation using cognitive tasks has been employed as a noninvasive therapy to prevent subsequent intrusive retrieval. The present study aims to test whether physical activity, with its cognitive demands and unique physiological effects, may provide a novel practice to reduce later involuntary retrieval via the reconsolidation mechanism. In addition, the study investigates the EEG representation of neural function in interpreting the interplay of intrusion and recognition. Eighty-seven participants were tested on successive sessions comprised encoding (Day 0), reconsolidation (24-hr) and priming retrieval (Day 7) in a between-subject design with random assignment to 3 different groups: whole-body exercise, sensorimotor engagement and sitting groups. Of the key results, when involuntary retrieval was subsequently triggered by relevant stimuli, reduced subjective recognition was observed, and working memory maintenance was shortened, indicated by shorter Negative Slow Wave duration. The study implicates the potential neurophysiological mechanism of cognitive and behavioral interventions, specifically those aimed at reducing intrusion frequency through the reconsolidation mechanism; these are proposed to facilitate accelerated recovery from involuntary memories.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Haiting Zhu
- Department of Tourism, University of Otago, Dunedin, New Zealand
| | - Elizabeth Franz
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Siddiqui A, Abu Hasan R, Saad Azhar Ali S, Elamvazuthi I, Lu CK, Tang TB. Detection of Low Resilience Using Data-Driven Effective Connectivity Measures. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3657-3668. [PMID: 39302782 DOI: 10.1109/tnsre.2024.3465269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Conventional thresholding techniques for graph theory analysis, such as absolute, proportional and mean degree, have often been used in characterizing human brain networks under different mental disorders, such as mental stress. However, these approaches may not always be reliable as conventional thresholding approaches are subjected to human biases. Using a mental resilience study, we investigate if data-driven thresholding techniques such as Global Cost Efficiency (GCE-abs) and Orthogonal Minimum Spanning Trees (OMSTs) could provide equivalent results, whilst eliminating human biases. We implemented Phase Slope Index (PSI) to compute effective brain connectivity, and applied data-driven thresholding approaches to filter the brain networks in order to identify key features of low resilience within a cohort of healthy individuals. Our dataset encompassed resting-state EEG recordings gathered from a total of 36 participants (31 females and 5 males). Relevant features were extracted to train and validate a classifier model (Support Vector Machine, SVM). The detection of low stress resilience among healthy individuals using the SVM model scores an accuracy of 80.6% with GCE-abs, and 75% with OMSTs, respectively.
Collapse
|
5
|
Bahrami F, Taghizadeh M, Shayegh F. Investigation of Electrical Signals in the Brain of People with Autism Using Effective Connectivity Network. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:24. [PMID: 39234588 PMCID: PMC11373796 DOI: 10.4103/jmss.jmss_15_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 09/06/2024]
Abstract
Unlike other functional integration methods that examine the relationship and correlation between two channels, effective connection reports the direct effect of one channel on another and expresses their causal relationship. In this article, we investigate and classify electroencephalographic (EEG) signals based on effective connectivity. In this study, we leverage the Granger causality (GC) relationship, a method for measuring effective connectivity, to analyze EEG signals from both healthy individuals and those with autism. The EEG signals examined in this article were recorded during the presentation of abstract images. Given the nonstationary nature of EEG signals, a vector autoregression model has been employed to model the relationships between signals across different channels. GC is then used to quantify the influence of these channels on one another. Selecting regions of interest (ROI) is a critical step, as the quality of the time periods under consideration significantly impacts the outcomes of the connectivity analysis among the electrodes. By comparing these effects in the ROI and various areas, we have distinguished healthy subjects from those suffering from autism. Furthermore, through statistical analysis, we have compared the results between healthy individuals and those with autism. It has been observed that the causal relationship between these two hemispheres is significantly weaker in healthy individuals compared to those with autism.
Collapse
Affiliation(s)
- Farzaneh Bahrami
- Faculty of Technology and Engineering, Shahrekord University, Shahrekord, Iran
| | - Maryam Taghizadeh
- Faculty of Technology and Engineering, Shahrekord University, Shahrekord, Iran
| | - Farzaneh Shayegh
- Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
6
|
Nilsen AS, Arena A, Storm JF. Exploring effects of anesthesia on complexity, differentiation, and integrated information in rat EEG. Neurosci Conscious 2024; 2024:niae021. [PMID: 38757120 PMCID: PMC11097907 DOI: 10.1093/nc/niae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
To investigate mechanisms underlying loss of consciousness, it is important to extend methods established in humans to rodents as well. Perturbational complexity index (PCI) is a promising metric of "capacity for consciousness" and is based on a perturbational approach that allows inferring a system's capacity for causal integration and differentiation of information. These properties have been proposed as necessary for conscious systems. Measures based on spontaneous electroencephalography recordings, however, may be more practical for certain clinical purposes and may better reflect ongoing dynamics. Here, we compare PCI (using electrical stimulation for perturbing cortical activity) to several spontaneous electroencephalography-based measures of signal diversity and integrated information in rats undergoing propofol, sevoflurane, and ketamine anesthesia. We find that, along with PCI, the spontaneous electroencephalography-based measures, Lempel-Ziv complexity (LZ) and geometric integrated information (ΦG), were best able to distinguish between awake and propofol and sevoflurane anesthesia. However, PCI was anti-correlated with spontaneous measures of integrated information, which generally increased during propofol and sevoflurane anesthesia, contrary to expectations. Together with an observed divergence in network properties estimated from directed functional connectivity (current results) and effective connectivity (earlier results), the perturbation-based results seem to suggest that anesthesia disrupts global cortico-cortical information transfer, whereas spontaneous activity suggests the opposite. We speculate that these seemingly diverging results may be because of suppressed encoding specificity of information or driving subcortical projections from, e.g., the thalamus. We conclude that certain perturbation-based measures (PCI) and spontaneous measures (LZ and ΦG) may be complementary and mutually informative when studying altered states of consciousness.
Collapse
Affiliation(s)
- André Sevenius Nilsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - Alessandro Arena
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - Johan F Storm
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| |
Collapse
|
7
|
Izzi JVR, Ferreira RF, Girardi VA, Pena RFO. Identifying Effective Connectivity between Stochastic Neurons with Variable-Length Memory Using a Transfer Entropy Rate Estimator. Brain Sci 2024; 14:442. [PMID: 38790421 PMCID: PMC11119028 DOI: 10.3390/brainsci14050442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Information theory explains how systems encode and transmit information. This article examines the neuronal system, which processes information via neurons that react to stimuli and transmit electrical signals. Specifically, we focus on transfer entropy to measure the flow of information between sequences and explore its use in determining effective neuronal connectivity. We analyze the causal relationships between two discrete time series, X:=Xt:t∈Z and Y:=Yt:t∈Z, which take values in binary alphabets. When the bivariate process (X,Y) is a jointly stationary ergodic variable-length Markov chain with memory no larger than k, we demonstrate that the null hypothesis of the test-no causal influence-requires a zero transfer entropy rate. The plug-in estimator for this function is identified with the test statistic of the log-likelihood ratios. Since under the null hypothesis, this estimator follows an asymptotic chi-squared distribution, it facilitates the calculation of p-values when applied to empirical data. The efficacy of the hypothesis test is illustrated with data simulated from a neuronal network model, characterized by stochastic neurons with variable-length memory. The test results identify biologically relevant information, validating the underlying theory and highlighting the applicability of the method in understanding effective connectivity between neurons.
Collapse
Affiliation(s)
- João V. R. Izzi
- Department of Statistics, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Ricardo F. Ferreira
- Department of Statistics, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Victor A. Girardi
- Department of Statistics, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Rodrigo F. O. Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
8
|
Avvaru S, Parhi KK. Effective Brain Connectivity Extraction by Frequency-Domain Convergent Cross-Mapping (FDCCM) and Its Application in Parkinson's Disease Classification. IEEE Trans Biomed Eng 2023; 70:2475-2485. [PMID: 37027754 DOI: 10.1109/tbme.2023.3250355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
OBJECTIVE Inferring causal or effective connectivity between measured timeseries is crucial to understanding directed interactions in complex systems. This task is especially challenging in the brain as the underlying dynamics are not well-understood. This paper aims to introduce a novel causality measure called frequency-domain convergent cross-mapping (FDCCM) that utilizes frequency-domain dynamics through nonlinear state-space reconstruction. METHOD Using synthesized chaotic timeseries, we investigate general applicability of FDCCM at different causal strengths and noise levels. We also apply our method on two resting-state Parkinson's datasets with 31 and 54 subjects, respectively. To this end, we construct causal networks, extract network features, and perform machine learning analysis to distinguish Parkinson's disease patients (PD) from age and gender-matched healthy controls (HC). Specifically, we use the FDCCM networks to compute the betweenness centrality of the network nodes, which act as features for the classification models. RESULT The analysis on simulated data showed that FDCCM is resilient to additive Gaussian noise, making it suitable for real-world applications. Our proposed method also decodes scalp-EEG signals to classify the PD and HC groups with approximately 97% leave-one-subject-out cross-validation accuracy. We compared decoders from six cortical regions to find that features derived from the left temporal lobe lead to a higher classification accuracy of 84.5% compared to other regions. Moreover, when the classifier trained using FDCCM networks from one dataset was tested on an independent out-of-sample dataset, it attained an accuracy of 84%. This accuracy is significantly higher than correlational networks (45.2%) and CCM networks (54.84%). SIGNIFICANCE These findings suggest that our spectral-based causality measure can improve classification performance and reveal useful network biomarkers of Parkinson's disease.
Collapse
|
9
|
Khan DM, Yahya N, Kamel N, Faye I. A novel method for efficient estimation of brain effective connectivity in EEG. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 228:107242. [PMID: 36423484 DOI: 10.1016/j.cmpb.2022.107242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Brain connectivity plays a pivotal role in understanding the brain's information processing functions by providing various details including magnitude, direction, and temporal dynamics of inter-neuron connections. While the connectivity may be classified as structural, functional and causal, a complete in-vivo directional analysis is guaranteed by the latter and is referred to as Effective Connectivity (EC). Two most widely used EC techniques are Directed Transfer Function (DTF) and Partial Directed Coherence (PDC) which are based on multivariate autoregressive models. The drawbacks of these techniques include poor frequency resolution and the requirement for experimental approach to determine signal normalization and thresholding techniques in identifying significant connectivities between multivariate sources. METHODS In this study, the drawbacks of DTF and PDC are addressed by proposing a novel technique, termed as Efficient Effective Connectivity (EEC), for the estimation of EC between multivariate sources using AR spectral estimation and Granger causality principle. In EEC, a linear predictive filter with AR coefficients obtained via multivariate EEG is used for signal prediction. This leads to the estimation of full-length signals which are then transformed into frequency domain by using Burg spectral estimation method. Furthermore, the newly proposed normalization method addressed the effect on each source in EEC using the sum of maximum connectivity values over the entire frequency range. Lastly, the proposed dynamic thresholding works by subtracting the first moment of causal effects of all the sources on one source from individual connections present for that source. RESULTS The proposed method is evaluated using synthetic and real resting-state EEG of 46 healthy controls. A 3D-Convolutional Neural Network is trained and tested using the PDC and EEC samples. The result indicates that compared to PDC, EEC improves the EEG eye-state classification accuracy, sensitivity and specificity by 5.57%, 3.15% and 8.74%, respectively. CONCLUSION Correct identification of all connections in synthetic data and improved resting-state classification performance using EEC proved that EEC gives better estimation of directed causality and indicates that it can be used for reliable understanding of brain mechanisms. Conclusively, the proposed technique may open up new research dimensions for clinical diagnosis of mental disorders.
Collapse
Affiliation(s)
- Danish M Khan
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia; Department of Telecommunications Engineering, NED University of Engineering & Technology, University Road, Karachi 75270, Pakistan.
| | - Norashikin Yahya
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
| | - Nidal Kamel
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia; VinUniversity, College of Engineering and Computer Science, Vinhomes Ocean Park, Gia Lam District, Hanoi, Vietnam
| | - Ibrahima Faye
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| |
Collapse
|
10
|
Góngora L, Paglialonga A, Mastropietro A, Rizzo G, Barbieri R. A Novel Approach for Segment-Length Selection Based on Stationarity to Perform Effective Connectivity Analysis Applied to Resting-State EEG Signals. SENSORS 2022; 22:s22134747. [PMID: 35808250 PMCID: PMC9269473 DOI: 10.3390/s22134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023]
Abstract
Connectivity among different areas within the brain is a topic that has been notably studied in the last decade. In particular, EEG-derived measures of effective connectivity examine the directionalities and the exerted influences raised from the interactions among neural sources that are masked out on EEG signals. This is usually performed by fitting multivariate autoregressive models that rely on the stationarity that is assumed to be maintained over shorter bits of the signals. However, despite being a central condition, the selection process of a segment length that guarantees stationary conditions has not been systematically addressed within the effective connectivity framework, and thus, plenty of works consider different window sizes and provide a diversity of connectivity results. In this study, a segment-size-selection procedure based on fourth-order statistics is proposed to make an informed decision on the appropriate window size that guarantees stationarity both in temporal and spatial terms. Specifically, kurtosis is estimated as a function of the window size and used to measure stationarity. A search algorithm is implemented to find the segments with similar stationary properties while maximizing the number of channels that exhibit the same properties and grouping them accordingly. This approach is tested on EEG signals recorded from six healthy subjects during resting-state conditions, and the results obtained from the proposed method are compared to those obtained using the classical approach for mapping effective connectivity. The results show that the proposed method highlights the influence that arises in the Default Mode Network circuit by selecting a window of 4 s, which provides, overall, the most uniform stationary properties across channels.
Collapse
Affiliation(s)
- Leonardo Góngora
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Alessia Paglialonga
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy;
| | - Alfonso Mastropietro
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), 20054 Segrate, Italy; (A.M.); (G.R.)
| | - Giovanna Rizzo
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), 20054 Segrate, Italy; (A.M.); (G.R.)
| | - Riccardo Barbieri
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
- Correspondence:
| |
Collapse
|
11
|
Shi J, Chen L, Aihara K. Embedding entropy: a nonlinear measure of dynamical causality. J R Soc Interface 2022; 19:20210766. [PMID: 35350881 PMCID: PMC8965400 DOI: 10.1098/rsif.2021.0766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
Research on concepts and computational methods of causality has a long history, and there are various concepts of causality as well as corresponding computing algorithms based on measured data. Here, by considering causes and effects from a dynamical perspective, we present a unified mathematical framework for the so-called dynamical causality (DC), which can detect causal interactions over time; notably, this framework covers Granger causality, transfer entropy, embedding causality and their conditional versions. Based on this framework, we further propose a causality criterion called embedding entropy (EE) to measure the DC between two variables. Moreover, its conditional version, conditional embedding entropy (cEE), is also derived for detecting conditional/direct causality. The significant advantages of EE and cEE are that they can be employed for solving not only nonlinear causal inference but also the non-separability problem, and they can reduce the scale bias in numerical calculation. The performance and robustness of EE and cEE were demonstrated through numerical simulations, and causal inference on various real-world datasets validated their effectiveness.
Collapse
Affiliation(s)
- Jifan Shi
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, People’s Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, People’s Republic of China
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Ramos-Loyo J, Olguín-Rodríguez PV, Espinosa-Denenea SE, Llamas-Alonso LA, Rivera-Tello S, Müller MF. EEG functional brain connectivity strengthens with age during attentional processing to faces in children. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:890906. [PMID: 36926063 PMCID: PMC10013043 DOI: 10.3389/fnetp.2022.890906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/15/2022] [Indexed: 03/18/2023]
Abstract
Studying functional connectivity may generate clues to the maturational changes that occur in children, expressed by the dynamical organization of the functional network assessed by electroencephalographic recordings (EEG). In the present study, we compared the EEG functional connectivity pattern estimated by linear cross-correlations of the electrical brain activity of three groups of children (6, 8, and 10 years of age) while performing odd-ball tasks containing facial stimuli that are chosen considering their importance in socioemotional contexts in everyday life. On the first task, the children were asked to identify the sex of faces, on the second, the instruction was to identify the happy expressions of the faces. We estimated the stable correlation pattern (SCP) by the average cross-correlation matrix obtained separately for the resting state and the task conditions and quantified the similarity of these average matrices comparing the different conditions. The accuracy improved with higher age. Although the topology of the SCPs showed high similarity across all ages, the two older groups showed a higher correlation between regions associated with the attentional and face processing networks compared to the youngest group. Only in the youngest group, the similarity metric decreased during the sex condition. In general, correlation values strengthened with age and during task performance compared to rest. Our findings indicate that there is a spatially extended stable brain network organization in children like that reported in adults. Lower similarity scores between several regions in the youngest children might indicate a lesser ability to cope with tasks. The brain regions associated with the attention and face networks presented higher synchronization across regions with increasing age, modulated by task demands.
Collapse
Affiliation(s)
- Julieta Ramos-Loyo
- Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Paola V Olguín-Rodríguez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, México.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | | | - Sergio Rivera-Tello
- Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Markus F Müller
- Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México.,Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.,Centro Internacional de Ciencias A. C., Cuernavaca, Morelos, México
| |
Collapse
|
13
|
Orkan Olcay B, Özgören M, Karaçalı B. On the characterization of cognitive tasks using activity-specific short-lived synchronization between electroencephalography channels. Neural Netw 2021; 143:452-474. [PMID: 34273721 DOI: 10.1016/j.neunet.2021.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Accurate characterization of brain activity during a cognitive task is challenging due to the dynamically changing and the complex nature of the brain. The majority of the proposed approaches assume stationarity in brain activity and disregard the systematic timing organization among brain regions during cognitive tasks. In this study, we propose a novel cognitive activity recognition method that captures the activity-specific timing parameters from training data that elicits maximal average short-lived pairwise synchronization between electroencephalography signals. We evaluated the characterization power of the activity-specific timing parameter triplets in a motor imagery activity recognition framework. The activity-specific timing parameter triplets consist of latency of the maximally synchronized signal segments from activity onset Δt, the time lag between maximally synchronized signal segments τ, and the duration of the maximally synchronized signal segments w. We used cosine-based similarity, wavelet bi-coherence, phase-locking value, phase coherence value, linearized mutual information, and cross-correntropy to calculate the channel synchronizations at the specific timing parameters. Recognition performances as well as statistical analyses on both BCI Competition-III dataset IVa and PhysioNet Motor Movement/Imagery dataset, indicate that the inter-channel short-lived synchronization calculated using activity-specific timing parameter triplets elicit significantly distinct synchronization profiles for different motor imagery tasks and can thus reliably be used for cognitive task recognition purposes.
Collapse
Affiliation(s)
- B Orkan Olcay
- Department of Electrical and Electronics Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| | - Murat Özgören
- Department of Biophysics, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus.
| | - Bilge Karaçalı
- Department of Electrical and Electronics Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
14
|
Abbas AK, Azemi G, Amiri S, Ravanshadi S, Omidvarnia A. Effective connectivity in brain networks estimated using EEG signals is altered in children with ADHD. Comput Biol Med 2021; 134:104515. [PMID: 34126282 DOI: 10.1016/j.compbiomed.2021.104515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022]
Abstract
This study presents a methodology developed for estimating effective connectivity in brain networks (BNs) using multichannel scalp EEG recordings. The methodology uses transfer entropy as an information transfer measure to detect pair-wise directed information transfer between EEG signals within δ, θ, α, β and γ-bands. The developed methodology is then used to study the properties of directed BNs in children with attention-deficit hyperactivity disorder (ADHD) and compare them with that of the healthy controls using both statistical and receiver operating characteristic (ROC) analyses. The results indicate that directed information transfer between scalp EEG electrodes in the ADHD subjects differs significantly compared to the healthy ones. The results of the statistical and ROC analyses of frequency-specific graph measures demonstrate their highly discriminative ability between the two groups. Specifically, the graph measures extracted from the estimated directed BNs in the β-band show the highest discrimination between the ADHD and control groups. These findings are in line with the fact that β-band reflects active concentration, motor activity, and anxious mental states. The reported results show that the developed methodology has the capacity to be used for investigating patterns of directed BNs in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ali Kareem Abbas
- Faculty of Electrical and Computer Engineering, Razi University, Kermanshah, Iran
| | - Ghasem Azemi
- Faculty of Electrical and Computer Engineering, Razi University, Kermanshah, Iran; Department of Cognitive Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| | - Sajad Amiri
- Faculty of Electrical and Computer Engineering, Razi University, Kermanshah, Iran
| | - Samin Ravanshadi
- Faculty of Electrical and Computer Engineering, Razi University, Kermanshah, Iran
| | - Amir Omidvarnia
- Institute of Bioengineering, Center for Neuroprosthetics, Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Koutlis C, Kimiskidis VK, Kugiumtzis D. Comparison of Causality Network Estimation in the Sensor and Source Space: Simulation and Application on EEG. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:706487. [PMID: 36925583 PMCID: PMC10013050 DOI: 10.3389/fnetp.2021.706487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022]
Abstract
The usage of methods for the estimation of the true underlying connectivity among the observed variables of a system is increasing, especially in the domain of neuroscience. Granger causality and similar concepts are employed for the estimation of the brain network from electroencephalogram (EEG) data. Also source localization techniques, such as the standardized low resolution electromagnetic tomography (sLORETA), are widely used for obtaining more reliable data in the source space. In this work, connectivity structures are estimated in the sensor and in the source space making use of the sLORETA transformation for simulated and for EEG data with episodes of spontaneous epileptiform discharges (ED). From the comparative simulation study on high-dimensional coupled stochastic and deterministic systems originating in the sensor space, we conclude that the structure of the estimated causality networks differs in the sensor space and in the source space. Moreover, different network types, such as random, small-world and scale-free, can be better discriminated on the basis of the data in the original sensor space than on the transformed data in the source space. Similarly, in EEG epochs containing epileptiform discharges, the discriminative ability of network topological indices was significantly better in the sensor compared to the source level. In conclusion, causality networks constructed at the sensor and source level, for both simulated and empirical data, exhibit significant structural differences. These observations indicate that further studies are warranted in order to clarify the exact relationship between data registered in the sensor and source space.
Collapse
Affiliation(s)
- Christos Koutlis
- Information Technologies Institute, Centre of Research and Technology Hellas, Thessaloniki, Greece
| | - Vasilios K Kimiskidis
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitris Kugiumtzis
- Division of Electronics and Computing, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Lehnertz K, Bröhl T, Rings T. The Human Organism as an Integrated Interaction Network: Recent Conceptual and Methodological Challenges. Front Physiol 2020; 11:598694. [PMID: 33408639 PMCID: PMC7779628 DOI: 10.3389/fphys.2020.598694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
The field of Network Physiology aims to advance our understanding of how physiological systems and sub-systems interact to generate a variety of behaviors and distinct physiological states, to optimize the organism's functioning, and to maintain health. Within this framework, which considers the human organism as an integrated network, vertices are associated with organs while edges represent time-varying interactions between vertices. Likewise, vertices may represent networks on smaller spatial scales leading to a complex mixture of interacting homogeneous and inhomogeneous networks of networks. Lacking adequate analytic tools and a theoretical framework to probe interactions within and among diverse physiological systems, current approaches focus on inferring properties of time-varying interactions-namely strength, direction, and functional form-from time-locked recordings of physiological observables. To this end, a variety of bivariate or, in general, multivariate time-series-analysis techniques, which are derived from diverse mathematical and physical concepts, are employed and the resulting time-dependent networks can then be further characterized with methods from network theory. Despite the many promising new developments, there are still problems that evade from a satisfactory solution. Here we address several important challenges that could aid in finding new perspectives and inspire the development of theoretic and analytical concepts to deal with these challenges and in studying the complex interactions between physiological systems.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Al-Ezzi A, Kamel N, Faye I, Gunaseli E. Review of EEG, ERP, and Brain Connectivity Estimators as Predictive Biomarkers of Social Anxiety Disorder. Front Psychol 2020; 11:730. [PMID: 32508695 PMCID: PMC7248208 DOI: 10.3389/fpsyg.2020.00730] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Social anxiety disorder (SAD) is characterized by a fear of negative evaluation, negative self-belief and extreme avoidance of social situations. These recurrent symptoms are thought to maintain the severity and substantial impairment in social and cognitive thoughts. SAD is associated with a disruption in neuronal networks implicated in emotional regulation, perceptual stimulus functions, and emotion processing, suggesting a network system to delineate the electrocortical endophenotypes of SAD. This paper seeks to provide a comprehensive review of the most frequently studied electroencephalographic (EEG) spectral coupling, event-related potential (ERP), visual-event potential (VEP), and other connectivity estimators in social anxiety during rest, anticipation, stimulus processing, and recovery states. A search on Web of Science provided 97 studies that document electrocortical biomarkers and relevant constructs pertaining to individuals with SAD. This study aims to identify SAD neuronal biomarkers and provide insight into the differences in these biomarkers based on EEG, ERPs, VEP, and brain connectivity networks in SAD patients and healthy controls (HC). Furthermore, we proposed recommendations to improve methods of delineating the electrocortical endophenotypes of SAD, e.g., a fusion of EEG with other modalities such as functional magnetic resonance imaging (fMRI) and magnetoencephalograms (MEG), to realize better effectiveness than EEG alone, in order to ultimately evolve the treatment selection process, and to review the possibility of using electrocortical measures in the early diagnosis and endophenotype examination of SAD.
Collapse
Affiliation(s)
- Abdulhakim Al-Ezzi
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Nidal Kamel
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Ibrahima Faye
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Esther Gunaseli
- Psychiatry Discipline Sub Unit, Universiti Kuala Lumpur, Ipoh, Malaysia
| |
Collapse
|
18
|
Siggiridou E, Koutlis C, Tsimpiris A, Kugiumtzis D. Evaluation of Granger Causality Measures for Constructing Networks from Multivariate Time Series. ENTROPY 2019. [PMCID: PMC7514424 DOI: 10.3390/e21111080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Granger causality and variants of this concept allow the study of complex dynamical systems as networks constructed from multivariate time series. In this work, a large number of Granger causality measures used to form causality networks from multivariate time series are assessed. These measures are in the time domain, such as model-based and information measures, the frequency domain, and the phase domain. The study aims also to compare bivariate and multivariate measures, linear and nonlinear measures, as well as the use of dimension reduction in linear model-based measures and information measures. The latter is particular relevant in the study of high-dimensional time series. For the performance of the multivariate causality measures, low and high dimensional coupled dynamical systems are considered in discrete and continuous time, as well as deterministic and stochastic. The measures are evaluated and ranked according to their ability to provide causality networks that match the original coupling structure. The simulation study concludes that the Granger causality measures using dimension reduction are superior and should be preferred particularly in studies involving many observed variables, such as multi-channel electroencephalograms and financial markets.
Collapse
Affiliation(s)
- Elsa Siggiridou
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece; (E.S.); (C.K.)
| | - Christos Koutlis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece; (E.S.); (C.K.)
- Information Technologies Institute, Centre of Research and Technology Hellas, Thessaloniki 57001, Greece
| | - Alkiviadis Tsimpiris
- Department of Computer, Informatics and Telecommunications Engineering, International Hellenic University, Serres 62124, Greece;
| | - Dimitris Kugiumtzis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece; (E.S.); (C.K.)
- Correspondence: ; Tel.: +30-2310995955
| |
Collapse
|