1
|
Nourzadegan N, Baghernezhad S, Daliri MR. Influence of individual's age on the characteristics of brain effective connectivity. GeroScience 2025; 47:2455-2474. [PMID: 39549197 PMCID: PMC11978603 DOI: 10.1007/s11357-024-01436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Given the increasing number of older adults in society, there is a growing need for studies on changes in the aging brain. The aim of this research is to investigate the effective connectivity of different age groups using resting-state functional magnetic resonance imaging (fMRI) and graph theory. By examining connectivity in different age groups, a better understanding of age-related changes can be achieved. Lifespan pilot data from the Human Connectome Project (HCP) were used to examine dynamic effective connectivity (dEC) changes across different age groups. The Granger causality method with time windowing was employed to calculate dEC. After extracting graph measures, statistical analyses were performed to compare the age groups. Support vector machine and decision tree classifiers were used to classify the different age groups based on the extracted graph measures. Based on the obtained results, it can be concluded that there are significant differences in the effective connectivity among the three age groups. Statistical analyses revealed disassortativity. The global efficiency exhibited a decreasing trend, and the transitivity measure showed an increasing trend with the advancing age. The decision tree classifier showed an accuracy of 86.67 % with Kruskal-Wallis selected features. This study demonstrates that changes in effective connectivity across different age brackets can serve as a tool for better understanding brain function during the aging process.
Collapse
Affiliation(s)
- Nakisa Nourzadegan
- Neuroscience & Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Sepideh Baghernezhad
- Neuroscience & Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mohammad Reza Daliri
- Neuroscience & Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
2
|
Aslan U, Akşahin MF. Enhancing multiple sclerosis diagnosis: A comparative study of electroencephalogram signal processing and entropy methods. Comput Biol Med 2025; 185:109615. [PMID: 39721414 DOI: 10.1016/j.compbiomed.2024.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
As one of the most common neurodegenerative diseases, Multiple sclerosis (MS) is a chronic immune-driven disorder that affects the central nervous system (CNS). Due to the variety of symptoms, accurately diagnosing MS demands rigorous attention to differential diagnosis, as various disorders can closely mimic its clinical and paraclinical features. Although MR imaging techniques are gold standards in diagnosing MS, the feasibility of advanced Electroencephalogram (EEG) signal processing methods is discussed in this study to detect patients with MS disorder. EEG signals from 50 individuals were evaluated through entropy-based methods. Sixteen distinct entropy methods were employed to extract features, which were used to train several machine-learning algorithms for classifying MS patients. Furthermore, each entropy method was individually evaluated to identify the most effective approach for MS diagnosis. A regional analysis of the EEG channels was conducted to determine the most informative regions for classification. The results indicated that the proposed method outperformed previous studies and achieved highly effective results in the classification of MS patients.
Collapse
Affiliation(s)
- Umut Aslan
- Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey.
| | - Mehmet Feyzi Akşahin
- Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Szekely-Kohn AC, Castellani M, Espino DM, Baronti L, Ahmed Z, Manifold WGK, Douglas M. Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241052. [PMID: 39845718 PMCID: PMC11750376 DOI: 10.1098/rsos.241052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 01/24/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS. Published MS MRI-based computational studies can be divided into five categories: automated diagnosis; differentiation between lesion types and/or MS stages; differential diagnosis; monitoring and predicting disease progression; and synthetic MRI dataset generation. Collectively, these approaches show promise in assisting with MS diagnosis, monitoring of disease activity and prediction of future progression, all potentially contributing to disease management. Analysis quality using ML is highly dependent on the dataset size and variability used for training. Wider public access would mean larger datasets for experimentation, resulting in higher-quality analysis, permitting for more conclusive research. This narrative review provides an outline of the fundamentals of MS pathology and pathogenesis, diagnostic techniques and data types in computational analysis, as well as collating literature pertaining to the application of computational techniques to MRI towards developing a better understanding of MS.
Collapse
Affiliation(s)
- Adam C. Szekely-Kohn
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Marco Castellani
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Daniel M. Espino
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Luca Baronti
- School of Computer Science, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Zubair Ahmed
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | | | - Michael Douglas
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
- Department of Neurology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, BirminghamDY1 2HQ, UK
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
4
|
Wang H, Chen J, Yuan Z, Huang Y, Lin F. NHSMM-MAR-sdNC: A novel data-driven computational framework for state-dependent effective connectivity analysis. Med Image Anal 2024; 97:103290. [PMID: 39094462 DOI: 10.1016/j.media.2024.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/08/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The brain exhibits intrinsic dynamics characterized by spontaneous spatiotemporal reorganization of neural activity or metastability, which is associated closely with functional integration and segregation. Compared to dynamic functional connectivity, state-dependent effective connectivity (i.e., dynamic effective connectivity) is more suitable for exploring the metastability as its ability to infer causalities between brain regions. However, methods for state-dependent effective connectivity are scarce and urgently needed. In this study, a novel data-driven computational framework, named NHSMM-MAR-sdNC integrating nonparametric hidden semi-Markov model combined with multivariate autoregressive model and state-dependent new causality, is proposed to investigate the state-dependent effective connectivity. The framework is not constrained by any biological assumptions. Furthermore, state number can be inferred from the observed data directly and the state duration distributions will be estimated explicitly rather than restricted by geometric form, which overcomes limitations of hidden Markov model. Experimental results of synthetic data show that the framework can identify the state number adaptively and the state-dependent causality networks accurately. The dynamics of state-related causality networks are also revealed by the new method on real-world resting-state fMRI data. Our method provides a new data-driven computational framework for identifying state-dependent effective connectivity, which will facilitate the identification and assessment of metastability and itinerant dynamics of the brain.
Collapse
Affiliation(s)
- Houxiang Wang
- School of Science, Wuhan University of Technology, Wuhan Hubei, 430071, China
| | - Jiaqing Chen
- School of Science, Wuhan University of Technology, Wuhan Hubei, 430071, China.
| | - Zihao Yuan
- School of Science, Wuhan University of Technology, Wuhan Hubei, 430071, China
| | - Yangxin Huang
- School of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
| |
Collapse
|
5
|
Baghernezhad S, Daliri MR. Age-related changes in human brain functional connectivity using graph theory and machine learning techniques in resting-state fMRI data. GeroScience 2024; 46:5303-5320. [PMID: 38499956 PMCID: PMC11336041 DOI: 10.1007/s11357-024-01128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Aging is the basis of neurodegeneration and dementia that affects each endemic in the body. Normal aging in the brain is associated with progressive slowdown and disruptions in various abilities such as motor ability, cognitive impairment, decreasing information processing speed, attention, and memory. With the aggravation of global aging, more research focuses on brain changes in the elderly adult. The graph theory, in combination with functional magnetic resonance imaging (fMRI), makes it possible to evaluate the brain network functional connectivity patterns in different conditions with brain modeling. We have evaluated the brain network communication model changes in three different age groups (including 8 to 15 years, 25 to 35 years, and 45 to 75 years) in lifespan pilot data from the human connectome project (HCP). Initially, Pearson correlation-based connectivity networks were calculated and thresholded. Then, network characteristics were compared between the three age groups by calculating the global and local graph measures. In the resting state brain network, we observed decreasing global efficiency and increasing transitivity with age. Also, brain regions, including the amygdala, putamen, hippocampus, precuneus, inferior temporal gyrus, anterior cingulate gyrus, and middle temporal gyrus, were selected as the most affected brain areas with age through statistical tests and machine learning methods. Using feature selection methods, including Fisher score and Kruskal-Wallis, we were able to classify three age groups using SVM, KNN, and decision-tree classifier. The best classification accuracy is in the combination of Fisher score and decision tree classifier obtained, which was 82.2%. Thus, by examining the measures of functional connectivity using graph theory, we will be able to explore normal age-related changes in the human brain, which can be used as a tool to monitor health with age.
Collapse
Affiliation(s)
- Sepideh Baghernezhad
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mohammad Reza Daliri
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
6
|
Zhang F, Li Y, Liu L, Liu Y, Wang P, Biswal BB. Corticostriatal causality analysis in children and adolescents with attention-deficit/hyperactivity disorder. Psychiatry Clin Neurosci 2024; 78:291-299. [PMID: 38444215 PMCID: PMC11469573 DOI: 10.1111/pcn.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
AIM The effective connectivity between the striatum and cerebral cortex has not been fully investigated in attention-deficit/hyperactivity disorder (ADHD). Our objective was to explore the interaction effects between diagnosis and age on disrupted corticostriatal effective connectivity and to represent the modulation function of altered connectivity pathways in children and adolescents with ADHD. METHODS We performed Granger causality analysis on 300 participants from a publicly available Attention-Deficit/Hyperactivity Disorder-200 dataset. By computing the correlation coefficients between causal connections between striatal subregions and other cortical regions, we estimated the striatal inflow and outflow connection to represent intermodulation mechanisms in corticostriatal pathways. RESULTS Interactions between diagnosis and age were detected in the superior occipital gyrus within the visual network, medial prefrontal cortex, posterior cingulate gyrus, and inferior parietal lobule within the default mode network, which is positively correlated with hyperactivity/impulsivity severity in ADHD. Main effect of diagnosis exhibited a general higher cortico-striatal causal connectivity involving default mode network, frontoparietal network and somatomotor network in ADHD compared with comparisons. Results from high-order effective connectivity exhibited a disrupted information pathway involving the default mode-striatum-somatomotor-striatum-frontoparietal networks in ADHD. CONCLUSION The interactions detected in the visual-striatum-default mode networks pathway appears to be related to the potential distraction caused by long-term abnormal information input from the retina in ADHD. Higher causal connectivity and weakened intermodulation may indicate the pathophysiological process that distractions lead to the impairment of motion planning function and the inhibition/control of this unplanned motion signals in ADHD.
Collapse
Affiliation(s)
- Fanyu Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yilu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yefen Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
7
|
Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis. Neurol Sci 2023; 44:499-517. [PMID: 36303065 DOI: 10.1007/s10072-022-06460-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The expansion of the availability of advanced imaging methods needs more time, expertise, and resources which is in contrast to the primary goal of the imaging techniques. To overcome most of these difficulties, artificial intelligence (AI) can be used. A number of studies used AI models for multiple sclerosis (MS) diagnosis and reported diverse results. Therefore, we aim to perform a comprehensive systematic review and meta-analysis study on the role of AI in the diagnosis of MS. METHODS We performed a systematic search using four databases including PubMed, Scopus, Web of Science, and IEEE. Studies that applied deep learning or AI to the diagnosis of MS based on any modalities were considered eligible in our study. The accuracy, sensitivity, specificity, precision, and area under curve (AUC) were pooled with a random-effects model and 95% confidence interval (CI). RESULTS After the screening, 41 articles with 5989 individuals met the inclusion criteria and were included in our qualitative and quantitative synthesis. Our analysis showed that the overall accuracy among studies was 94% (95%CI: 93%, 96%). The pooled sensitivity and specificity were 92% (95%CI: 90%, 95%) and 93% (95%CI: 90%, 96%), respectively. Furthermore, our analysis showed 92% precision in MS diagnosis for AI studies (95%CI: 88%, 97%). Also, the overall pooled AUC was 93% (95%CI: 89%, 96%). CONCLUSION Overall, AI models can further improve our diagnostic practice in MS patients. Our results indicate that the use of AI can aid the clinicians in accurate diagnosis of MS and improve current diagnostic approaches as most of the parameters including accuracy, sensitivity, specificity, precision, and AUC were considerably high, especially when using MRI data.
Collapse
|
8
|
Singh P, Kumar Gandhi T, Kumar L. Reorganization of resting-state brain network functional connectivity across human brain developmental stages. Brain Res 2023; 1800:148196. [PMID: 36463956 DOI: 10.1016/j.brainres.2022.148196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Cognitive brain aging can either be healthy or degenerative in nature. Multiple alterations occur in brain networks with healthy aging. Much of this has yet to be investigated. This study seeks to understand the typical healthy human brain's developmental stages using a publicly available dataset from the human connectome project. As the human brain's developmental stage varies, we also intend to identify a pattern of reorganization in the resting state functional connectivity of several brain networks. The results are specifically presented based on the resting state BOLD signals of 1096 healthy volunteers between the age group of 7-89 years. The k-means clustering method has been used to determine the various human brain developmental stages. Using the t-SNE technique, the clusters are visually separated. BrainNet Viewer is used to study the changes in resting state functional connectivity of the entire brain as the human brain developmental stages vary. The age-related pattern of change in the resting state functional connectivity of six Dosenbasch brain networks that were grouped using the k-means elbow approach has been additionally presented. For performance evaluation, three metrics of brain network connection including network segregation, between network connectivity, and within-network connectivity are used. As the age cohort changes, a consistent pattern in the variance of these connection indices is seen for different Dosenbasch brain networks. Thus, the study's findings suggest that healthy aging causes a functional reorganization of the resting state brain network connections.
Collapse
Affiliation(s)
- Prerna Singh
- Bharti School of Telecommunication Technology and Management, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110096, India
| | - Tapan Kumar Gandhi
- Cadence Chair Professor of Automation & AI, Convenor, Computer Technology, Department of Electrical Engineering, Hauz Khas, New Delhi 110096, India; Bharti School of Telecommunication, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Lalan Kumar
- Department of Electrical Engineering, Bharti School of Telecommunication, New Delhi 110016, India; Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
9
|
Hejazi S, Karwowski W, Farahani FV, Marek T, Hancock PA. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci 2023; 13:brainsci13020246. [PMID: 36831789 PMCID: PMC9953947 DOI: 10.3390/brainsci13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is an immune system disease in which myelin in the nervous system is affected. This abnormal immune system mechanism causes physical disabilities and cognitive impairment. Functional magnetic resonance imaging (fMRI) is a common neuroimaging technique used in studying MS. Computational methods have recently been applied for disease detection, notably graph theory, which helps researchers understand the entire brain network and functional connectivity. (2) Methods: Relevant databases were searched to identify articles published since 2000 that applied graph theory to study functional brain connectivity in patients with MS based on fMRI. (3) Results: A total of 24 articles were included in the review. In recent years, the application of graph theory in the MS field received increased attention from computational scientists. The graph-theoretical approach was frequently combined with fMRI in studies of functional brain connectivity in MS. Lower EDSSs of MS stage were the criteria for most of the studies (4) Conclusions: This review provides insights into the role of graph theory as a computational method for studying functional brain connectivity in MS. Graph theory is useful in the detection and prediction of MS and can play a significant role in identifying cognitive impairment associated with MS.
Collapse
Affiliation(s)
- Sara Hejazi
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
10
|
Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, Alturaif RK, Brahimi S, Aljameel SS, Al Ghamdi K. Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22207856. [PMID: 36298206 PMCID: PMC9609137 DOI: 10.3390/s22207856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 05/17/2023]
Abstract
Multiple Sclerosis (MS) is a disease that impacts the central nervous system (CNS), which can lead to brain, spinal cord, and optic nerve problems. A total of 2.8 million are estimated to suffer from MS. Globally, a new case of MS is reported every five minutes. In this review, we discuss the proposed approaches to diagnosing MS using machine learning (ML) published between 2011 and 2022. Numerous models have been developed using different types of data, including magnetic resonance imaging (MRI) and clinical data. We identified the methods that achieved the best results in diagnosing MS. The most implemented approaches are SVM, RF, and CNN. Moreover, we discussed the challenges and opportunities in MS diagnosis to improve AI systems to enable researchers and practitioners to enhance their approaches and improve the automated diagnosis of MS. The challenges faced by automated MS diagnosis include difficulty distinguishing the disease from other diseases showing similar symptoms, protecting the confidentiality of the patients' data, achieving reliable ML models that are also easily understood by non-experts, and the difficulty of collecting a large reliable dataset. Moreover, we discussed several opportunities in the field such as the implementation of secure platforms, employing better AI solutions, developing better disease prognosis systems, combining more than one data type for better MS prediction and using OCT data for diagnosis, utilizing larger, multi-center datasets to improve the reliability of the developed models, and commercialization.
Collapse
Affiliation(s)
- Nida Aslam
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence:
| | - Irfan Ullah Khan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Asma Bashamakh
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatima A. Alghool
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Menna Aboulnour
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Noorah M. Alsuwayan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rawa’a K. Alturaif
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samiha Brahimi
- Department of Computer Information Systems, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sumayh S. Aljameel
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Kholoud Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
11
|
Soleimani B, Das P, Dushyanthi Karunathilake IM, Kuchinsky SE, Simon JZ, Babadi B. NLGC: Network localized Granger causality with application to MEG directional functional connectivity analysis. Neuroimage 2022; 260:119496. [PMID: 35870697 PMCID: PMC9435442 DOI: 10.1016/j.neuroimage.2022.119496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Identifying the directed connectivity that underlie networked activity between different cortical areas is critical for understanding the neural mechanisms behind sensory processing. Granger causality (GC) is widely used for this purpose in functional magnetic resonance imaging analysis, but there the temporal resolution is low, making it difficult to capture the millisecond-scale interactions underlying sensory processing. Magnetoencephalography (MEG) has millisecond resolution, but only provides low-dimensional sensor-level linear mixtures of neural sources, which makes GC inference challenging. Conventional methods proceed in two stages: First, cortical sources are estimated from MEG using a source localization technique, followed by GC inference among the estimated sources. However, the spatiotemporal biases in estimating sources propagate into the subsequent GC analysis stage, may result in both false alarms and missing true GC links. Here, we introduce the Network Localized Granger Causality (NLGC) inference paradigm, which models the source dynamics as latent sparse multivariate autoregressive processes and estimates their parameters directly from the MEG measurements, integrated with source localization, and employs the resulting parameter estimates to produce a precise statistical characterization of the detected GC links. We offer several theoretical and algorithmic innovations within NLGC and further examine its utility via comprehensive simulations and application to MEG data from an auditory task involving tone processing from both younger and older participants. Our simulation studies reveal that NLGC is markedly robust with respect to model mismatch, network size, and low signal-to-noise ratio, whereas the conventional two-stage methods result in high false alarms and mis-detections. We also demonstrate the advantages of NLGC in revealing the cortical network-level characterization of neural activity during tone processing and resting state by delineating task- and age-related connectivity changes.
Collapse
Affiliation(s)
- Behrad Soleimani
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| | - Proloy Das
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA; Department of Biology, University of Maryland College Park, MD, USA.
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
12
|
Yılmaz Acar Z, Başçiftçi F, Ekmekci AH. Future activity prediction of multiple sclerosis with 3D MRI using 3D discrete wavelet transform. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Li L, Zeng A, Fan Y, Di Z. Modeling multi-opinion propagation in complex systems with heterogeneous relationships via Potts model on signed networks. CHAOS (WOODBURY, N.Y.) 2022; 32:083101. [PMID: 36049951 DOI: 10.1063/5.0084525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
This paper investigates how the heterogenous relationships around us affect the spread of diverse opinions in the population. We apply the Potts model, derived from condensed matter physics on signed networks, to multi-opinion propagation in complex systems with logically contradictory interactions. Signed networks have received increasing attention due to their ability to portray both positive and negative associations simultaneously, while the Potts model depicts the coevolution of multiple states affected by interactions. Analyses and experiments on both synthetic and real signed networks reveal the impact of the topology structure on the emergence of consensus and the evolution of balance in a system. We find that, regardless of the initial opinion distribution, the proportion and location of negative edges in the signed network determine whether a consensus can be formed. The effect of topology on the critical ratio of negative edges reflects two distinct phenomena: consensus and the multiparty situation. Surprisingly, adding a small number of negative edges leads to a sharp breakdown in consensus under certain circumstances. The community structure contributes to the common view within camps and the confrontation (or alliance) between camps. The importance of inter- or intra-community negative relationships varies depending on the diversity of opinions. The results also show that the dynamic process causes an increase in network structural balance and the emergence of dominant high-order structures. Our findings demonstrate the strong effects of logically contradictory interactions on collective behaviors, and could help control multi-opinion propagation and enhance the system balance.
Collapse
Affiliation(s)
- Lingbo Li
- School of Systems Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - An Zeng
- School of Systems Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ying Fan
- School of Systems Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zengru Di
- School of Systems Science, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
14
|
Rosoł M, Młyńczak M, Cybulski G. Granger causality test with nonlinear neural-network-based methods: Python package and simulation study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106669. [PMID: 35151111 DOI: 10.1016/j.cmpb.2022.106669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Causality defined by Granger in 1969 is a widely used concept, particularly in neuroscience and economics. As there is an increasing interest in nonlinear causality research, a Python package with a neural-network-based causality analysis approach was created. It allows performing causality tests using neural networks based on Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), or Multilayer Perceptron (MLP). The aim of this paper is to present the nonlinear method for causality analysis and the created Python package. METHODS The created functions with the autoregressive (AR) and Generalized Radial Basis Functions (GRBF) neural network models were tested on simulated signals in two cases: with nonlinear dependency and with absence of causality from Y to X signal. The train-test split (70/30) was used. Errors obtained on the test set were compared using the Wilcoxon signed-rank test to determine the presence of the causality. For the chosen model, the proposed method of study the change of causality over time was presented. RESULTS In the case when X was a polynomial of Y, nonlinear methods were able to detect the causality, while the AR model did not manage to indicate it. The best results (in terms of the prediction accuracy) were obtained for the MLP for the lag of 150 (MSE equal to 0.011, compared to 0.041 and 0.036 for AR and GRBF, respectively). When there was no causality between the signals, none of the proposed and AR models did indicate false causality, while it was detected by GRBF models in one case. Only the proposed models gave the expected results in each of the tested scenarios. CONCLUSIONS The proposed method appeared to be superior to the compared methods. They were able to detect non-linear causality, make accurate forecasting and not indicate false causality. The created package enables easy usage of neural networks to study the causal relationship between signals. The neural-networks-based approach is a suitable method that allows the detection of a nonlinear causal relationship, which cannot be detected by the classical Granger method. Unlike other similar tools, the package allows for the study of changes in causality over time.
Collapse
Affiliation(s)
- Maciej Rosoł
- Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland.
| | - Marcel Młyńczak
- Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Gerard Cybulski
- Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
15
|
Zandbagleh A, Mirzakuchaki S, Daliri MR, Premkumar P, Sanei S. Classification of Low and High Schizotypy Levels via Evaluation of Brain Connectivity. Int J Neural Syst 2022; 32:2250013. [PMID: 35236254 DOI: 10.1142/s0129065722500137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Schizotypy is a latent cluster of personality traits that denote a vulnerability for schizophrenia or a type of spectrum disorder. The aim of the study is to investigate parametric effective brain connectivity features for classifying high versus low schizotypy (LS) status. Electroencephalography (EEG) signals are recorded from 13 high schizotypy (HS) and 11 LS participants during an emotional auditory odd-ball task. The brain connectivity signals for machine learning are taken after the settlement of event-related potentials. A multivariate autoregressive (MVAR)-based connectivity measure is estimated from the EEG signals using the directed transfer functions (DTFs) method. The values of DTF power in five standard frequency bands are used as features. The support vector machines (SVMs) revealed significant differences between HS and LS. The accuracy, specificity, and sensitivity of the results using SVM are as high as 89.21%, 90.3%, and 88.2%, respectively. Our results demonstrate that the effective brain connectivity in prefrontal/parietal and prefrontal/frontal brain regions considerably changes according to schizotypal status. These findings prove that the brain connectivity indices offer valuable biomarkers for detecting schizotypal personality. Further monitoring of the changes in DTF following the diagnosis of schizotypy may lead to the early identification of schizophrenia and other spectrum disorders.
Collapse
Affiliation(s)
- Ahmad Zandbagleh
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sattar Mirzakuchaki
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Daliri
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Preethi Premkumar
- Division of Psychology, School of Applied Sciences, London Southbank University, London, UK
| | - Saeid Sanei
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK
| |
Collapse
|
16
|
Hao S, Yang C, Li Z, Ren J. Distinguishing patients with temporal lobe epilepsy from normal controls with the directed graph measures of resting-state fMRI. Seizure 2022; 96:25-33. [DOI: 10.1016/j.seizure.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
|
17
|
The brain state of motor imagery is reflected in the causal information of functional near-infrared spectroscopy. Neuroreport 2022; 33:137-144. [PMID: 35139061 DOI: 10.1097/wnr.0000000000001765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Brain-computer interface (BCI) is a promising neurorehabilitation strategy for ameliorating post-stroke function disorders. Physiological changes in the brain, such as functional near-infrared spectroscopy (fNIRS) dedicated to exploring cerebral circulatory responses during neurological rehabilitation tasks, are essential for gaining insights into neurorehabilitation mechanisms. However, the relationship between the neurovascular responses in different brain regions under rehabilitation tasks remains unknown. OBJECTIVE The present study explores the fNIRS interactions between brain regions under different motor imagery (MI) tasks, emphasizing functional characteristics of brain network patterns and BCI motor task classification. METHODS Granger causality analysis (GCA) is carried out for oxyhemoglobin data from 29 study participants in left- and right-hand MI tasks. RESULTS According to research findings, homozygous and heterozygous states in the two brain connectivity modes reveal one and nine channel pairs, respectively, with significantly different (P < 0.05) GC values under the left- and right-hand MI tasks in the population. With reference to the total 10 channel pairs of causality differences between the two brain working states, a support vector machine is used to classify the two tasks with an overall accuracy of 83% for five-fold cross-validation. CONCLUSION As demonstrated in the present study, fNIRS offers causality patterns in different brain states of MIBCI motor tasks. The research findings show that fNIRS causality can be used to assess different states of the brain, providing theoretical support for its application to neurorehabilitation assessment protocols to ultimately improve patients' quality of life.Video Abstract: http://links.lww.com/WNR/A653.
Collapse
|
18
|
Nabizadeh F, Masrouri S, Ramezannezhad E, Ghaderi A, Sharafi AM, Soraneh S, Moghadasi AN. Artificial intelligence in the diagnosis of Multiple Sclerosis: a systematic review. Mult Scler Relat Disord 2022; 59:103673. [DOI: 10.1016/j.msard.2022.103673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
|
19
|
Moazami F, Lefevre-Utile A, Papaloukas C, Soumelis V. Machine Learning Approaches in Study of Multiple Sclerosis Disease Through Magnetic Resonance Images. Front Immunol 2021; 12:700582. [PMID: 34456913 PMCID: PMC8385534 DOI: 10.3389/fimmu.2021.700582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is one of the most common autoimmune diseases which is commonly diagnosed and monitored using magnetic resonance imaging (MRI) with a combination of clinical manifestations. The purpose of this review is to highlight the main applications of Machine Learning (ML) models and their performance in the MS field using MRI. We reviewed the articles of the last decade and grouped them based on the applications of ML in MS using MRI data into four categories: 1) Automated diagnosis of MS, 2) Prediction of MS disease progression, 3) Differentiation of MS stages, 4) Differentiation of MS from similar disorders.
Collapse
Affiliation(s)
- Faezeh Moazami
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Hôpital Saint-Louis, Paris, France
| | - Alain Lefevre-Utile
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Hôpital Saint-Louis, Paris, France.,Université Paris-Saclay, Saint Aubin, France.,Assistance Publique Hopitaux de Paris (APHP), General Pediatric and Pediatric Emergency Department, Jean Verdier Hospital, Bondy, France
| | - Costas Papaloukas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Vassili Soumelis
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Hôpital Saint-Louis, Paris, France.,Assistance Publique Hopitaux de Paris (APHP), Hôpital Saint-Louis, Immunology-Histocompatibility Department, Paris, France
| |
Collapse
|
20
|
Karaca BK, Akşahin MF, Öcal R. Detection of multiple sclerosis from photic stimulation EEG signals. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Mirmohammadi P, Ameri M, Shalbaf A. Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier. Phys Eng Sci Med 2021; 44:433-441. [PMID: 33751420 DOI: 10.1007/s13246-021-00993-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequently leukemia and categorized into three morphological subtypes named L1, L2 and L3. Early diagnosis of ALL plays a key role in treatment procedure especially in the case of children. Several similarities between morphology of three subtypes ALL (L1, L2, L3) and lymphocyte subtypes (normal, reactive and atypical) as noncancerous cells have remained a high challenge. Diagnosis of ALL and lymphocyte subtypes are done by microscopic viewing examination of cells in the peripheral blood samples by hematologists. Since this exam is time-consuming, boring and dependent on the skill of the hematologists, automatic systems are desired to overcome these limitations. In this study, 312 microscopic images including 958 cells are obtained from blood samples of 7 normal subjects and 14 patients. The first step of proposed system is image enhancement to decreases the effects of various luminosity situations with transformation from RGB to HSV color space and then applying histogram equalization on V channel for equalizing the grey level of image lightness. Nuclei segmentation from the blood cell images is the second step and performed using fuzzy c-means (FCM) clustering. After identify cluster of nuclei, we performed opening and closing process in morphological operation binary in order to remove extra noises and fill some minor holes in the nuclei. Moreover, to discrete the link between nuclei, watershed transform was applied. Then, a set of quantitative features (five geometric features about the size and figure of a cell and 36 statistical features about the spatial arrangement of intensities of nuclei image) are extracted to characterize the properties of these nuclei. In the next step, due to high number of features, the best features are selected by exhaustive search of all of the subsets of features and 13 features are selected. The final step is the classification of L1, L2, L3, normal, reactive and atypical cells by applying Random Forest (RF) classifier and result in 98% accuracy. We compared RF classifier with two other commonly classifiers named: MultiLayer Perceptron (MLP), and multi-SVM classifier with more success especially for recognition of L1, normal and reactive cells. So, this system can be used as an assistant diagnostic tool for hematologists to recognize subtypes of ALL and lymphocyte.
Collapse
Affiliation(s)
- Pouria Mirmohammadi
- Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Ameri
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Vázquez-Marrufo M, Sarrias-Arrabal E, García-Torres M, Martín-Clemente R, Izquierdo G. A systematic review of the application of machine-learning algorithms in multiple sclerosis. Neurologia 2021; 38:S0213-4853(20)30431-X. [PMID: 33549371 DOI: 10.1016/j.nrl.2020.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 10/11/2020] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION The applications of artificial intelligence, and in particular automatic learning or "machine learning" (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years. OBJECTIVE We present a systematic review of the application of ML algorithms in MS. MATERIALS AND METHODS We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords "machine learning" and "multiple sclerosis." We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected. CONCLUSIONS After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS.
Collapse
Affiliation(s)
- M Vázquez-Marrufo
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, España.
| | - E Sarrias-Arrabal
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, España
| | - M García-Torres
- Escuela Politécnica Superior, Universidad Pablo de Olavide, Sevilla, España
| | - R Martín-Clemente
- Departamento de Teoría de la Señal y Comunicaciones, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, España
| | - G Izquierdo
- Unidad de Esclerosis Múltiple, Hospital VITHAS, Sevilla, España
| |
Collapse
|
23
|
Mengucci C, Remondini D, Castellani G, Giampieri E. WISDoM: Characterizing Neurological Time Series With the Wishart Distribution. Front Neuroinform 2021; 14:611762. [PMID: 33584238 PMCID: PMC7875084 DOI: 10.3389/fninf.2020.611762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
WISDoM (Wishart Distributed Matrices) is a framework for the quantification of deviation of symmetric positive-definite matrices associated with experimental samples, such as covariance or correlation matrices, from expected ones governed by the Wishart distribution. WISDoM can be applied to tasks of supervised learning, like classification, in particular when such matrices are generated by data of different dimensionality (e.g., time series with same number of variables but different time sampling). We show the application of the method in two different scenarios. The first is the ranking of features associated with electro encephalogram (EEG) data with a time series design, providing a theoretically sound approach for this type of studies. The second is the classification of autistic subjects of the Autism Brain Imaging Data Exchange study using brain connectivity measurements.
Collapse
Affiliation(s)
- Carlo Mengucci
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Enrico Giampieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Automated detection of driver fatigue from electroencephalography through wavelet-based connectivity. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Huang J, Li M, Li Q, Yang Z, Xin B, Qi Z, Liu Z, Dong H, Li K, Ding Z, Lu J. Altered Functional Connectivity in White and Gray Matter in Patients With Multiple Sclerosis. Front Hum Neurosci 2020; 14:563048. [PMID: 33343314 PMCID: PMC7738428 DOI: 10.3389/fnhum.2020.563048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Functional magnetic resonance imaging (fMRI) has been widely used to assess neural activity changes in gray matter (GM) in patients with multiple sclerosis (MS); however, brain function alterations in white matter (WM) relatively remain under-explored. Purpose: This work aims to identify the functional connectivity in both the WM and the GM of patients with MS using fMRI and the correlations between these functional changes and cumulative disability as well as the lesion ratio. Materials and Methods: For this retrospective study, 37 patients with clinically definite MS and 43 age-matched healthy controls were included between 2010 and 2014. Resting-state fMRI was performed. The WFU Pick and JHU Eve atlases were used to define 82 GM and 48 WM regions in common spaces, respectively. The time courses of blood oxygen level-dependent (BOLD) signals were averaged over each GM or WM region. The averaged time courses for each pair of GM and WM regions were correlated. All 82 × 48 correlations for each subject formed a functional correlation matrix. Results: Compared with the healthy controls, the MS patients had a decreased temporal correlation between the WM and the GM regions. Five WM bundles and four GM regions had significantly decreased mean correlation coefficients (CCs). More specifically, the WM functional alterations were negatively correlated with the lesion volume in the bilateral fornix, and the mean GM-averaged CCs of the WM bundles were inversely correlated with the lesion ratio (r = -0.36, P = 0.012). No significant correlation was found between WM functional alterations and the paced auditory serial addition test score, Expanded Disease Severity Scale score, and Multiple Sclerosis Severity Score (MSSS) in MS. Conclusions: These findings highlight current gaps in our knowledge of the WM functional alterations in patients with MS and may link WM function with pathological mechanisms.
Collapse
Affiliation(s)
- Jing Huang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Muwei Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
| | - Qiongge Li
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Yang
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Bowen Xin
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Zhigang Qi
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Liu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huiqing Dong
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
| | - Jie Lu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Segato A, Marzullo A, Calimeri F, De Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng 2020; 4:041503. [PMID: 33094213 PMCID: PMC7556883 DOI: 10.1063/5.0011697] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is a major branch of computer science that is fruitfully used for analyzing complex medical data and extracting meaningful relationships in datasets, for several clinical aims. Specifically, in the brain care domain, several innovative approaches have achieved remarkable results and open new perspectives in terms of diagnosis, planning, and outcome prediction. In this work, we present an overview of different artificial intelligent techniques used in the brain care domain, along with a review of important clinical applications. A systematic and careful literature search in major databases such as Pubmed, Scopus, and Web of Science was carried out using "artificial intelligence" and "brain" as main keywords. Further references were integrated by cross-referencing from key articles. 155 studies out of 2696 were identified, which actually made use of AI algorithms for different purposes (diagnosis, surgical treatment, intra-operative assistance, and postoperative assessment). Artificial neural networks have risen to prominent positions among the most widely used analytical tools. Classic machine learning approaches such as support vector machine and random forest are still widely used. Task-specific algorithms are designed for solving specific problems. Brain images are one of the most used data types. AI has the possibility to improve clinicians' decision-making ability in neuroscience applications. However, major issues still need to be addressed for a better practical use of AI in the brain. To this aim, it is important to both gather comprehensive data and build explainable AI algorithms.
Collapse
Affiliation(s)
- Alice Segato
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Aldo Marzullo
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Francesco Calimeri
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| |
Collapse
|
27
|
Decoding covert visual attention based on phase transfer entropy. Physiol Behav 2020; 222:112932. [DOI: 10.1016/j.physbeh.2020.112932] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/18/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
|
28
|
Davoudi S, Ahmadi A, Daliri MR. Frequency–amplitude coupling: a new approach for decoding of attended features in covert visual attention task. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05222-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|