1
|
Wang H, Yang T, Fan J, Zhang H, Zhang W, Ji M, Miao J. DML-MFCM: A multimodal fine-grained classification model based on deep metric learning for Alzheimer's disease diagnosis. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2025; 33:211-228. [PMID: 39973767 DOI: 10.1177/08953996241300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder. There are no drugs and methods for the treatment of AD, but early intervention can delay the deterioration of the disease. Therefore, the early diagnosis of AD and mild cognitive impairment (MCI) is significant. Structural magnetic resonance imaging (sMRI) is widely used to present structural changes in the subject's brain tissue. The relatively mild structural changes in the brain with MCI have led to ongoing challenges in the task of conversion prediction in MCI. Moreover, many multimodal AD diagnostic models proposed in recent years ignore the potential relationship between multimodal information. OBJECTIVE To solve these problems, we propose a multimodal fine-grained classification model based on deep metric learning for AD diagnosis (DML-MFCM), which can fully exploit the fine-grained feature information of sMRI and learn the potential relationships between multimodal feature information. METHODS First, we propose a fine-grained feature extraction module that can effectively capture the fine-grained feature information of the lesion area. Then, we introduce a multimodal cross-attention module to learn the potential relationships between multimodal data. In addition, we design a hybrid loss function based on deep metric learning. It can guide the model to learn the feature representation method between samples, which improves the model's performance in disease diagnosis. RESULTS We have extensively evaluated the proposed models on the ADNI and AIBL datasets. The ACC of AD vs. NC, MCI vs. NC, and sMCI vs. pMCI tasks in the ADNI dataset are 98.75%, 95.88%, and 88.00%, respectively. The ACC on the AD vs. NC and MCI vs. NC tasks in the AIBL dataset are 94.33% and 91.67%. CONCLUSIONS The results demonstrate that our method has excellent performance in AD diagnosis.
Collapse
Affiliation(s)
- Heng Wang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Tiejun Yang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Grain Information Processing and Control (HAUT), Ministry of Education, Zhengzhou, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control (HAUT), Zhengzhou, Henan, China
| | - Jiacheng Fan
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Huiyao Zhang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Wenjie Zhang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Mingzhu Ji
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jianyu Miao
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
2
|
Castro-Silva JA, Moreno-García MN, Guachi-Guachi L, Peluffo-Ordóñez DH. Novel hippocampus-centered methodology for informative instance selection in Alzheimer's disease data. Heliyon 2024; 10:e37552. [PMID: 39381107 PMCID: PMC11456841 DOI: 10.1016/j.heliyon.2024.e37552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The quantity and quality of a dataset play a crucial role in the performance of prediction models. Increasing the amount of data increases the computational requirements and can introduce negligible variations, outliers, and noise. These significantly impact the model performance. Thus, instance selection techniques are crucial for building prediction models with informative data, reducing the dataset size, improving performance, and minimizing computational costs. This study proposed a novel methodology for identifying the most informative two-dimensional slices derived from magnetic resonance imaging (MRI) to study Alzheimer's disease. The efficacy of our methodology was attributable to a hippocampus-centered analysis using data from multiple atlases. The methodology was evaluated by constructing convolutional neural networks to identify Alzheimer's disease, using a consolidated dataset constructed from three standard datasets: Alzheimer's Disease Neuroimaging Initiative, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing, and Open Access Series of Imaging Studies. The proposed methodology demonstrated a commendable subject-level classification accuracy of approximately ( 95.00 % ) when distinguishing between normal cognition and Alzheimer's.
Collapse
Affiliation(s)
- Juan A. Castro-Silva
- Universidad de Salamanca, Salamanca, Spain
- Universidad Surcolombiana, Neiva, Colombia
| | | | | | - Diego H. Peluffo-Ordóñez
- College of Computing, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco
- SDAS Research Group (https://sdas-group.com/), Ben Guerir 43150, Morocco
- Faculty of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto 520001, Colombia
| |
Collapse
|
3
|
Cheung EYW, Wu RWK, Chu ESM, Mak HKF. Integrating Demographics and Imaging Features for Various Stages of Dementia Classification: Feed Forward Neural Network Multi-Class Approach. Biomedicines 2024; 12:896. [PMID: 38672253 PMCID: PMC11047992 DOI: 10.3390/biomedicines12040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND MRI magnetization-prepared rapid acquisition (MPRAGE) is an easily available imaging modality for dementia diagnosis. Previous studies suggested that volumetric analysis plays a crucial role in various stages of dementia classification. In this study, volumetry, radiomics and demographics were integrated as inputs to develop an artificial intelligence model for various stages, including Alzheimer's disease (AD), mild cognitive decline (MCI) and cognitive normal (CN) dementia classifications. METHOD The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset was separated into training and testing groups, and the Open Access Series of Imaging Studies (OASIS) dataset was used as the second testing group. The MRI MPRAGE image was reoriented via statistical parametric mapping (SPM12). Freesurfer was employed for brain segmentation, and 45 regional brain volumes were retrieved. The 3D Slicer software was employed for 107 radiomics feature extractions from within the whole brain. Data on patient demographics were collected from the datasets. The feed-forward neural network (FFNN) and the other most common artificial intelligence algorithms, including support vector machine (SVM), ensemble classifier (EC) and decision tree (DT), were used to build the models using various features. RESULTS The integration of brain regional volumes, radiomics and patient demographics attained the highest overall accuracy at 76.57% and 73.14% in ADNI and OASIS testing, respectively. The subclass accuracies in MCI, AD and CN were 78.29%, 89.71% and 85.14%, respectively, in ADNI testing, as well as 74.86%, 88% and 83.43% in OASIS testing. Balanced sensitivity and specificity were obtained for all subclass classifications in MCI, AD and CN. CONCLUSION The FFNN yielded good overall accuracy for MCI, AD and CN categorization, with balanced subclass accuracy, sensitivity and specificity. The proposed FFNN model is simple, and it may support the triage of patients for further confirmation of the diagnosis.
Collapse
Affiliation(s)
- Eva Y. W. Cheung
- School of Medical and Health Sciences, Tung Wah College, 31 Wylie Road, HoManTin, Hong Kong
| | - Ricky W. K. Wu
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Ellie S. M. Chu
- School of Medical and Health Sciences, Tung Wah College, 31 Wylie Road, HoManTin, Hong Kong
| | - Henry K. F. Mak
- Department of Diagnostic Radiology, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
4
|
O'Connell S, Cannon DM, Broin PÓ. Predictive modelling of brain disorders with magnetic resonance imaging: A systematic review of modelling practices, transparency, and interpretability in the use of convolutional neural networks. Hum Brain Mapp 2023; 44:6561-6574. [PMID: 37909364 PMCID: PMC10681646 DOI: 10.1002/hbm.26521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Brain disorders comprise several psychiatric and neurological disorders which can be characterized by impaired cognition, mood alteration, psychosis, depressive episodes, and neurodegeneration. Clinical diagnoses primarily rely on a combination of life history information and questionnaires, with a distinct lack of discriminative biomarkers in use for psychiatric disorders. Symptoms across brain conditions are associated with functional alterations of cognitive and emotional processes, which can correlate with anatomical variation; structural magnetic resonance imaging (MRI) data of the brain are therefore an important focus of research, particularly for predictive modelling. With the advent of large MRI data consortia (such as the Alzheimer's Disease Neuroimaging Initiative) facilitating a greater number of MRI-based classification studies, convolutional neural networks (CNNs)-deep learning models well suited to image processing tasks-have become increasingly popular for research into brain conditions. This has resulted in a myriad of studies reporting impressive predictive performances, demonstrating the potential clinical value of deep learning systems. However, methodologies can vary widely across studies, making them difficult to compare and/or reproduce, potentially limiting their clinical application. Here, we conduct a qualitative systematic literature review of 55 studies carrying out CNN-based predictive modelling of brain disorders using MRI data and evaluate them based on three principles-modelling practices, transparency, and interpretability. We propose several recommendations to enhance the potential for the integration of CNNs into clinical care.
Collapse
Affiliation(s)
- Shane O'Connell
- School of Mathematical and Statistical Sciences, College of Science and EngineeringUniversity of GalwayGalwayIreland
| | - Dara M. Cannon
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of MedicineNursing and Health SciencesUniversity of GalwayGalwayIreland
| | - Pilib Ó. Broin
- School of Mathematical and Statistical Sciences, College of Science and EngineeringUniversity of GalwayGalwayIreland
| |
Collapse
|
5
|
Azevedo T, Bethlehem RAI, Whiteside DJ, Swaddiwudhipong N, Rowe JB, Lió P, Rittman T. Identifying healthy individuals with Alzheimer's disease neuroimaging phenotypes in the UK Biobank. COMMUNICATIONS MEDICINE 2023; 3:100. [PMID: 37474615 PMCID: PMC10359360 DOI: 10.1038/s43856-023-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Identifying prediagnostic neurodegenerative disease is a critical issue in neurodegenerative disease research, and Alzheimer's disease (AD) in particular, to identify populations suitable for preventive and early disease-modifying trials. Evidence from genetic and other studies suggests the neurodegeneration of Alzheimer's disease measured by brain atrophy starts many years before diagnosis, but it is unclear whether these changes can be used to reliably detect prediagnostic sporadic disease. METHODS We trained a Bayesian machine learning neural network model to generate a neuroimaging phenotype and AD score representing the probability of AD using structural MRI data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) Cohort (cut-off 0.5, AUC 0.92, PPV 0.90, NPV 0.93). We go on to validate the model in an independent real-world dataset of the National Alzheimer's Coordinating Centre (AUC 0.74, PPV 0.65, NPV 0.80) and demonstrate the correlation of the AD-score with cognitive scores in those with an AD-score above 0.5. We then apply the model to a healthy population in the UK Biobank study to identify a cohort at risk for Alzheimer's disease. RESULTS We show that the cohort with a neuroimaging Alzheimer's phenotype has a cognitive profile in keeping with Alzheimer's disease, with strong evidence for poorer fluid intelligence, and some evidence of poorer numeric memory, reaction time, working memory, and prospective memory. We found some evidence in the AD-score positive cohort for modifiable risk factors of hypertension and smoking. CONCLUSIONS This approach demonstrates the feasibility of using AI methods to identify a potentially prediagnostic population at high risk for developing sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Richard A I Bethlehem
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - David J Whiteside
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Nol Swaddiwudhipong
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Pietro Lió
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Pallawi S, Singh DK. Study of Alzheimer’s disease brain impairment and methods for its early diagnosis: a comprehensive survey. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL 2023; 12:7. [DOI: 10.1007/s13735-023-00271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 01/03/2025]
|
7
|
Liu F, Wang H, Liang SN, Jin Z, Wei S, Li X. MPS-FFA: A multiplane and multiscale feature fusion attention network for Alzheimer's disease prediction with structural MRI. Comput Biol Med 2023; 157:106790. [PMID: 36958239 DOI: 10.1016/j.compbiomed.2023.106790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/13/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Structural magnetic resonance imaging (sMRI) is a popular technique that is widely applied in Alzheimer's disease (AD) diagnosis. However, only a few structural atrophy areas in sMRI scans are highly associated with AD. The degree of atrophy in patients' brain tissues and the distribution of lesion areas differ among patients. Therefore, a key challenge in sMRI-based AD diagnosis is identifying discriminating atrophy features. Hence, we propose a multiplane and multiscale feature-level fusion attention (MPS-FFA) model. The model has three components, (1) A feature encoder uses a multiscale feature extractor with hybrid attention layers to simultaneously capture and fuse multiple pathological features in the sagittal, coronal, and axial planes. (2) A global attention classifier combines clinical scores and two global attention layers to evaluate the feature impact scores and balance the relative contributions of different feature blocks. (3) A feature similarity discriminator minimizes the feature similarities among heterogeneous labels to enhance the ability of the network to discriminate atrophy features. The MPS-FFA model provides improved interpretability for identifying discriminating features using feature visualization. The experimental results on the baseline sMRI scans from two databases confirm the effectiveness (e.g., accuracy and generalizability) of our method in locating pathological locations. The source code is available at https://github.com/LiuFei-AHU/MPSFFA.
Collapse
Affiliation(s)
- Fei Liu
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, China; School of Computer Science and Technology, Anhui University, Hefei, China
| | - Huabin Wang
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, China; School of Computer Science and Technology, Anhui University, Hefei, China.
| | - Shiuan-Ni Liang
- School of Engineering, Monash University Malaysia, Kuala Lumpur, Malaysia
| | - Zhe Jin
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, China
| | - Shicheng Wei
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, China
| | - Xuejun Li
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, China; School of Computer Science and Technology, Anhui University, Hefei, China
| | | |
Collapse
|
8
|
Structural MRI-Based Schizophrenia Classification Using Autoencoders and 3D Convolutional Neural Networks in Combination with Various Pre-Processing Techniques. Brain Sci 2022; 12:brainsci12050615. [PMID: 35625002 PMCID: PMC9139344 DOI: 10.3390/brainsci12050615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia is a severe neuropsychiatric disease whose diagnosis, unfortunately, lacks an objective diagnostic tool supporting a thorough psychiatric examination of the patient. We took advantage of today’s computational abilities, structural magnetic resonance imaging, and modern machine learning methods, such as stacked autoencoders (SAE) and 3D convolutional neural networks (3D CNN), to teach them to classify 52 patients with schizophrenia and 52 healthy controls. The main aim of this study was to explore whether complex feature extraction methods can help improve the accuracy of deep learning-based classifiers compared to minimally preprocessed data. Our experiments employed three commonly used preprocessing steps to extract three different feature types. They included voxel-based morphometry, deformation-based morphometry, and simple spatial normalization of brain tissue. In addition to classifier models, features and their combination, other model parameters such as network depth, number of neurons, number of convolutional filters, and input data size were also investigated. Autoencoders were trained on feature pools of 1000 and 5000 voxels selected by Mann-Whitney tests, and 3D CNNs were trained on whole images. The most successful model architecture (autoencoders) achieved the highest average accuracy of 69.62% (sensitivity 68.85%, specificity 70.38%). The results of all experiments were statistically compared (the Mann-Whitney test). In conclusion, SAE outperformed 3D CNN, while preprocessing using VBM helped SAE improve the results.
Collapse
|
9
|
Frizzell TO, Glashutter M, Liu CC, Zeng A, Pan D, Hajra SG, D’Arcy RC, Song X. Artificial intelligence in brain MRI analysis of Alzheimer's disease over the past 12 years: A systematic review. Ageing Res Rev 2022; 77:101614. [PMID: 35358720 DOI: 10.1016/j.arr.2022.101614] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Multiple structural brain changes in Alzheimer's disease (AD) and mild cognitive impairment (MCI) have been revealed on magnetic resonance imaging (MRI). There is a fast-growing effort in applying artificial intelligence (AI) to analyze these data. Here, we review and evaluate the AI studies in brain MRI analysis with synthesis. METHODS A systematic review of the literature, spanning the years from 2009 to 2020, was completed using the PubMed database. AI studies using MRI imaging to investigate normal aging, mild cognitive impairment, and AD-dementia were retrieved for review. Bias assessment was completed using the PROBAST criteria. RESULTS 97 relevant studies were included in the review. The studies were typically focused on the classification of AD, MCI, and normal aging (71% of the reported studies) and the prediction of MCI conversion to AD (25%). The best performance was achieved by using the deep learning-based convolution neural network algorithms (weighted average accuracy 89%), in contrast to 76-86% using Logistic Regression, Support Vector Machines, and other AI methods. DISCUSSION The synthesized evidence is paramount to developing sophisticated AI approaches to reliably capture and quantify multiple subtle MRI changes in the whole brain that exemplify the complexity and heterogeneity of AD and brain aging.
Collapse
|
10
|
Li R, Wang X, Lawler K, Garg S, Bai Q, Alty J. Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions. J Biomed Inform 2022; 127:104030. [PMID: 35183766 DOI: 10.1016/j.jbi.2022.104030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND & OBJECTIVE With populations aging, the number of people with dementia worldwide is expected to triple to 152 million by 2050. Seventy percent of cases are due to Alzheimer's disease (AD) pathology and there is a 10-20 year 'pre-clinical' period before significant cognitive decline occurs. We urgently need, cost effective, objective biomarkers to detect AD, and other dementias, at an early stage. Risk factor modification could prevent 40% of cases and drug trials would have greater chances of success if participants are recruited at an earlier stage. Currently, detection of dementia is largely by pen and paper cognitive tests but these are time consuming and insensitive to the pre-clinical phase. Specialist brain scans and body fluid biomarkers can detect the earliest stages of dementia but are too invasive or expensive for widespread use. With the advancement of technology, Artificial Intelligence (AI) shows promising results in assisting with detection of early-stage dementia. This scoping review aims to summarise the current capabilities of AI-aided digital biomarkers to aid in early detection of dementia, and also discusses potential future research directions. METHODS & MATERIALS In this scoping review, we used PubMed and IEEE Xplore to identify relevant papers. The resulting records were further filtered to retrieve articles published within five years and written in English. Duplicates were removed, titles and abstracts were screened and full texts were reviewed. RESULTS After an initial yield of 1,463 records, 1,444 records were screened after removal of duplication. A further 771 records were excluded after screening titles and abstracts, and 496 were excluded after full text review. The final yield was 177 studies. Records were grouped into different artificial intelligence based tests: (a) computerized cognitive tests (b) movement tests (c) speech, conversion, and language tests and (d) computer-assisted interpretation of brain scans. CONCLUSIONS In general, AI techniques enhance the performance of dementia screening tests because more features can be retrieved from a single test, there are less errors due to subjective judgements and AI shifts the automation of dementia screening to a higher level. Compared with traditional cognitive tests, AI-based computerized cognitive tests improve the discrimination sensitivity by around 4% and specificity by around 3%. In terms of speech, conversation and language tests, combining both acoustic features and linguistic features achieve the best result with accuracy around 94%. Deep learning techniques applied in brain scan analysis achieves around 92% accuracy. Movement tests and setting smart environments to capture daily life behaviours are two potential future directions that may help discriminate dementia from normal aging. AI-based smart environments and multi-modal tests are promising future directions to improve detection of dementia in the earliest stages.
Collapse
Affiliation(s)
- Renjie Li
- School of Information and Communication Technology, University of Tasmania, TAS 7005, Australia.
| | - Xinyi Wang
- Wicking Dementia Research and Education Centre, University of Tasmania, TAS 7000, Australia.
| | - Katherine Lawler
- Wicking Dementia Research and Education Centre, University of Tasmania, TAS 7000, Australia; Royal Hobart Hospital, Tasmania, TAS 7000, Australia.
| | - Saurabh Garg
- School of Information and Communication Technology, University of Tasmania, TAS 7005, Australia.
| | - Quan Bai
- School of Information and Communication Technology, University of Tasmania, TAS 7005, Australia.
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, TAS 7000, Australia; Royal Hobart Hospital, Tasmania, TAS 7000, Australia.
| |
Collapse
|
11
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. Brain Mitochondrial Dysfunction: A Possible Mechanism Links Early Life Anxiety to Alzheimer’s Disease in Later Life. Aging Dis 2022; 13:1127-1145. [PMID: 35855329 PMCID: PMC9286915 DOI: 10.14336/ad.2022.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengna Lu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinyu Zhu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Correspondence should be addressed to: Dr. Mingmei Zhou, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. E-mail:
| |
Collapse
|
12
|
Alinsaif S, Lang J. 3D shearlet-based descriptors combined with deep features for the classification of Alzheimer's disease based on MRI data. Comput Biol Med 2021; 138:104879. [PMID: 34598071 DOI: 10.1016/j.compbiomed.2021.104879] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that afflicts millions of people worldwide. Early detection of AD is critical, as drug trials show a promising advantage to those patients with early diagnoses. In this study, magnetic resonance imaging (MRI) datasets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and The Open Access Series of Imaging Studies are used. Our method for performing the classification of AD is to combine a set of shearlet-based descriptors with deep features. A major challenge in classifying such MRI datasets is the high dimensionality of feature vectors because of the large number of slices of each MRI sample. Given the volumetric nature of the MRI data, we propose using the 3D shearlet transform (3D-ST), but we obtain the average of all directionalities, which reduces the dimensionality. On the other hand, we propose to leverage the capabilities of convolutional neural networks (CNN) to learn feature maps from stacked MRI slices, which generate a very compact feature vector for each MRI sample. The 3D-ST and CNN feature vectors are combined for the classification of AD. After the concatenation of the feature vectors, they are used to train a classifier. Alternatively, a custom CNN model is utilized, in which the descriptors are further processed end to end to obtain the classification model. Our experimental results show that the fusion of shearlet-based descriptors and deep features improves classification performance, especially on the ADNI dataset.
Collapse
Affiliation(s)
- Sadiq Alinsaif
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, K1N 6N5, Canada; College of Computer Science and Engineering, University of Hafr Al Batin, Al Jamiah, Hafar Al Batin, 39524, Saudi Arabia.
| | - Jochen Lang
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, K1N 6N5, Canada.
| | | |
Collapse
|
13
|
Raza K, Singh NK. A Tour of Unsupervised Deep Learning for Medical Image Analysis. Curr Med Imaging 2021; 17:1059-1077. [PMID: 33504314 DOI: 10.2174/1573405617666210127154257] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Interpretation of medical images for the diagnosis and treatment of complex diseases from high-dimensional and heterogeneous data remains a key challenge in transforming healthcare. In the last few years, both supervised and unsupervised deep learning achieved promising results in the area of medical image analysis. Several reviews on supervised deep learning are published, but hardly any rigorous review on unsupervised deep learning for medical image analysis is available. OBJECTIVES The objective of this review is to systematically present various unsupervised deep learning models, tools, and benchmark datasets applied to medical image analysis. Some of the discussed models are autoencoders and its other variants, Restricted Boltzmann machines (RBM), Deep belief networks (DBN), Deep Boltzmann machine (DBM), and Generative adversarial network (GAN). Further, future research opportunities and challenges of unsupervised deep learning techniques for medical image analysis are also discussed. CONCLUSION Currently, interpretation of medical images for diagnostic purposes is usually performed by human experts that may be replaced by computer-aided diagnosis due to advancement in machine learning techniques, including deep learning, and the availability of cheap computing infrastructure through cloud computing. Both supervised and unsupervised machine learning approaches are widely applied in medical image analysis, each of them having certain pros and cons. Since human supervisions are not always available or inadequate or biased, therefore, unsupervised learning algorithms give a big hope with lots of advantages for biomedical image analysis.
Collapse
Affiliation(s)
- Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi. India
| | | |
Collapse
|
14
|
Chávez-Fumagalli MA, Shrivastava P, Aguilar-Pineda JA, Nieto-Montesinos R, Del-Carpio GD, Peralta-Mestas A, Caracela-Zeballos C, Valdez-Lazo G, Fernandez-Macedo V, Pino-Figueroa A, Vera-Lopez KJ, Lino Cardenas CL. Diagnosis of Alzheimer's Disease in Developed and Developing Countries: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. J Alzheimers Dis Rep 2021; 5:15-30. [PMID: 33681713 PMCID: PMC7902992 DOI: 10.3233/adr-200263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The present systematic review and meta-analysis of diagnostic test accuracy summarizes the last three decades in advances on diagnosis of Alzheimer's disease (AD) in developed and developing countries. OBJECTIVE To determine the accuracy of biomarkers in diagnostic tools in AD, for example, cerebrospinal fluid, positron emission tomography (PET), and magnetic resonance imaging (MRI), etc. METHODS The authors searched PubMed for published studies from 1990 to April 2020 on AD diagnostic biomarkers. 84 published studies were pooled and analyzed in this meta-analysis and diagnostic accuracy was compared by summary receiver operating characteristic statistics. RESULTS Overall, 84 studies met the criteria and were included in a meta-analysis. For EEG, the sensitivity ranged from 67 to 98%, with a median of 80%, 95% CI [75, 91], tau-PET diagnosis sensitivity ranged from 76 to 97%, with a median of 94%, 95% CI [76, 97]; and MRI sensitivity ranged from 41 to 99%, with a median of 84%, 95% CI [81, 87]. Our results showed that tau-PET diagnosis had higher performance as compared to other diagnostic methods in this meta-analysis. CONCLUSION Our findings showed an important discrepancy in diagnostic data for AD between developed and developing countries, which can impact global prevalence estimation and management of AD. Also, our analysis found a better performance for the tau-PET diagnostic over other methods to diagnose AD patients, but the expense of tau-PET scan seems to be the limiting factor in the diagnosis of AD in developing countries such as those found in Asia, Africa, and Latin America.
Collapse
Affiliation(s)
- Miguel A. Chávez-Fumagalli
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Pallavi Shrivastava
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Jorge A. Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Rita Nieto-Montesinos
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Gonzalo Davila Del-Carpio
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Antero Peralta-Mestas
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Claudia Caracela-Zeballos
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Guillermo Valdez-Lazo
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Victor Fernandez-Macedo
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Alejandro Pino-Figueroa
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Karin J. Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Christian L. Lino Cardenas
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
15
|
Deperlioglu O, Kose U, Gupta D, Khanna A, Sangaiah AK. Diagnosis of heart diseases by a secure Internet of Health Things system based on Autoencoder Deep Neural Network. COMPUTER COMMUNICATIONS 2020; 162:31-50. [PMID: 32843778 PMCID: PMC7434639 DOI: 10.1016/j.comcom.2020.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 05/04/2023]
Abstract
Objective of this study is to introduce a secure IoHT system, which acts as a clinical decision support system with the diagnosis of cardiovascular diseases. In this sense, it was emphasized that the accuracy rate of diagnosis (classification) can be improved via deep learning algorithms, by needing no hybrid-complex models, and a secure data processing can be achieved with a multi-authentication and Tangle based approach. In detail, heart sounds were classified with Autoencoder Neural Networks (AEN) and the IoHT system was built for supporting doctors in real-time. For developing the diagnosis infrastructure by the AEN, PASCAL B-Training and Physiobank-PhysioNet A-Training heart sound datasets were used accordingly. For the PASCAL dataset, the AEN provided a diagnosis-classification performance with the accuracy of 100%, sensitivity of 100%, and the specificity of 100% whereas the rates were respectively 99.8%, 99.65%, and 99.13% for the PhysioNet dataset. It was seen that the findings by the developed AEN based solution were better than the alternative solutions from the literature. Additionally, usability of the whole IoHT system was found positive by the doctors, and according to the 479 real-case applications, the system was able to achieve accuracy rates of 96.03% for normal heart sounds, 91.91% for extrasystole, and 90.11% for murmur. In terms of security approach, the system was also robust against several attacking methods including synthetic data impute as well as trying to penetrating to the system via central system or mobile devices.
Collapse
Affiliation(s)
| | - Utku Kose
- Suleyman Demirel University, Isparta, Turkey
| | - Deepak Gupta
- Maharaja Agrasen Institute of Technology, Delhi, India
| | - Ashish Khanna
- Maharaja Agrasen Institute of Technology, Delhi, India
| | - Arun Kumar Sangaiah
- School of Computing Science and Engineering, Vellore Institute of Technology, Vellore, India
- Department of Industrial Engineering and Management, National Yunlin University of Science and Technology, Taiwan
| |
Collapse
|