1
|
Campos FO, Bhagirath P, Monaci S, Chen Z, Whitaker J, Plank G, Rinaldi CA, Bishop MJ. Reconstructed scar morphology in patient-specific computational heart models has limited impact on the identification of ablation targets through in-silico pace mapping. Comput Biol Med 2025; 191:110229. [PMID: 40253921 DOI: 10.1016/j.compbiomed.2025.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Patient-specific computational modeling for guiding ventricular tachycardia (VT) ablation often requires precise scar reconstruction to simulate reentrant circuits. However, this can be limited by the quality of scar imaging data. In-silico pace mapping, which simulates pacing rather than VT circuits, may offer a more robust approach to identifying ablation targets. OBJECTIVE To investigate how the anatomical detail of scar reconstructions within computational image-based heart models influences the ability of in-silico pace mapping to identify VT origins. METHODS VT was simulated in 15 patient-specific models reconstructed from high-resolution contrast-enhanced cardiac magnetic resonance (CMR). The obtained scar anatomy was then altered to mimic heart models constructed based on low-quality imaging and no-scar data. The ECG of each simulated VT was taken as input for the in-silico pace mapping approach, which involved pacing the heart at 1000 random sites surrounding the infarct. Correlations between the VT and paced ECGs were used to compute pace maps. The distance (d) between visually identified exit sites (ground truth) and pacing locations with the strongest correlation was used to assess accuracy of our in-silico approach. RESULTS The performance of in-silico pace mapping was highest in high-resolution scar models (d = 7.3 ± 7.0 mm), but low-resolution and no-scar models still adequately located exit sites (d = 8.5 ± 6.5 mm and 13.3 ± 12.2 mm, respectively). CONCLUSION In-silico pace mapping provides a reliable method for identifying VT ablation targets, showing relative insensitivity to scar reconstruction quality. This advantage may support its clinical translation over methods requiring explicit VT simulation.
Collapse
Affiliation(s)
- Fernando O Campos
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK.
| | - Pranav Bhagirath
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Sofia Monaci
- Cardiac Rhythm Management, Medtronic, Minneapolis, USA
| | - Zhong Chen
- Royal Brompton & Harefield NHS Foundation Trust, UK
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Austria
| | - Christopher Aldo Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| |
Collapse
|
2
|
Handra J, James H, Mbilinyi A, Moller-Hansen A, O'Riley C, Andrade J, Deyell M, Hague C, Hawkins N, Ho K, Hu R, Leipsic J, Tam R. The Role of Machine Learning in the Detection of Cardiac Fibrosis in Electrocardiograms: Scoping Review. JMIR Cardio 2024; 8:e60697. [PMID: 39753213 PMCID: PMC11730231 DOI: 10.2196/60697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/30/2024] [Accepted: 11/06/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Cardiovascular disease remains the leading cause of mortality worldwide. Cardiac fibrosis impacts the underlying pathophysiology of many cardiovascular diseases by altering structural integrity and impairing electrical conduction. Identifying cardiac fibrosis is essential for the prognosis and management of cardiovascular disease; however, current diagnostic methods face challenges due to invasiveness, cost, and inaccessibility. Electrocardiograms (ECGs) are widely available and cost-effective for monitoring cardiac electrical activity. While ECG-based methods for inferring fibrosis exist, they are not commonly used due to accuracy limitations and the need for cardiac expertise. However, the ECG shows promise as a target for machine learning (ML) applications in fibrosis detection. OBJECTIVE This study aims to synthesize and critically evaluate the current state of ECG-based ML approaches for cardiac fibrosis detection. METHODS We conducted a scoping review of research in ECG-based ML applications to identify cardiac fibrosis. Comprehensive searches were performed in PubMed, IEEE Xplore, Scopus, Web of Science, and DBLP databases, including publications up to October 2024. Studies were included if they applied ML techniques to detect cardiac fibrosis using ECG or vectorcardiogram data and provided sufficient methodological details and outcome metrics. Two reviewers independently assessed eligibility and extracted data on the ML models used, their performance metrics, study designs, and limitations. RESULTS We identified 11 studies evaluating ML approaches for detecting cardiac fibrosis using ECG data. These studies used various ML techniques, including classical (8/11, 73%), ensemble (3/11, 27%), and deep learning models (4/11, 36%). Support vector machines were the most used classical model (6/11, 55%), with the best-performing models of each study achieving accuracies of 77% to 93%. Among deep learning approaches, convolutional neural networks showed promising results, with one study reporting an area under the receiver operating characteristic curve (AUC) of 0.89 when combined with clinical features. Notably, a large-scale convolutional neural network study (n=14,052) achieved an AUC of 0.84 for detecting cardiac fibrosis, outperforming cardiologists (AUC 0.63-0.66). However, many studies had limited sample sizes and lacked external validation, potentially impacting the generalizability of the findings. Variability in reporting methods may affect the reproducibility and applicability of these ML-based approaches. CONCLUSIONS ML-augmented ECG analysis shows promise for accessible and cost-effective detection of cardiac fibrosis. However, there are common limitations with respect to study design and insufficient external validation, raising concerns about the generalizability and clinical applicability of the findings. Inconsistencies in methodologies and incomplete reporting further impede cross-study comparisons. Future work may benefit from using prospective study designs, larger and more clinically and demographically diverse datasets, advanced ML models, and rigorous external validation. Addressing these challenges could pave the way for the clinical implementation of ML-based ECG detection of cardiac fibrosis to improve patient outcomes and health care resource allocation.
Collapse
Affiliation(s)
- Julia Handra
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Hannah James
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ashery Mbilinyi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ashley Moller-Hansen
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Callum O'Riley
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jason Andrade
- Division of Cardiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marc Deyell
- Division of Cardiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cameron Hague
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nathaniel Hawkins
- Division of Cardiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kendall Ho
- Department of Emergency Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ricky Hu
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jonathon Leipsic
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Roger Tam
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Qian S, Ugurlu D, Fairweather E, Strocchi M, Toso LD, Deng Y, Plank G, Vigmond E, Razavi R, Young A, Lamata P, Bishop M, Niederer S. Developing Cardiac Digital Twins at Scale: Insights from Personalised Myocardial Conduction Velocity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.05.23299435. [PMID: 38106072 PMCID: PMC10723499 DOI: 10.1101/2023.12.05.23299435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Large-cohort studies using cardiovascular imaging and diagnostic datasets have assessed cardiac anatomy, function, and outcomes, but typically do not reveal underlying biological mechanisms. Cardiac digital twins (CDTs) provide personalized physics- and physiology-constrained in-silico representations, enabling inference of multi-scale properties tied to these mechanisms. We constructed 3464 anatomically-accurate CDTs using cardiac magnetic resonance images from UK biobank and personalised their myocardial conduction velocities (CVs) from electrocardiograms (ECG), through an automated framework. We found well-known sex-specific differences in QRS duration were fully explained by myocardial anatomy, as CV remained consistent across sexes. Conversely, significant associations of CV with ageing and increased BMI suggest myocardial tissue remodelling. Novel associations were observed with left ventricular ejection fraction and mental-health phenotypes, through a phenome-wide association study, and CV was also linked with adverse clinical outcomes. Our study highlights the utility of population-based CDTs in assessing intersubject variability and uncovering strong links with mental health.
Collapse
|
4
|
Golpour A, Suwalski P, Landmesser U, Heidecker B. Case report: Magnetocardiography as a potential method of therapy monitoring in amyloidosis. Front Cardiovasc Med 2023; 10:1224578. [PMID: 37663414 PMCID: PMC10469684 DOI: 10.3389/fcvm.2023.1224578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Amyloidosis is characterized by a disorder of protein conformation and metabolism, resulting in deposits of insoluble fibrils in various organs causing functional disturbances. Amyloidosis can also affect the heart. Cardiac amyloidosis tends to have a poor prognostic outcome if diagnosed at a late stage. Therefore, early diagnosis and initiation of therapy as well as monitoring of treatment response are crucial to improve outcomes and to learn more about its pathophysiology and clinical course. We present an 83-year-old woman with cardiac transthyretin amyloidosis (ATTR) who was treated with tafamidis. The patient significantly improved 18 months after initiation of therapy with regards to exercise capacity and quality of life. In addition to standard diagnostic methods, we used magnetocardiography (MCG) to monitor potential treatment response by detecting changes in the magnetic field of the heart. MCG is a non-invasive method that detects the cardiac magnetic field generated by electrical currents in the heart with high sensitivity. We have recently shown that this magnetic field changes in various types of cardiomyopathies may be used as a non-invasive screening tool. We determined previously that an MCG vector ≥0.052 was the optimal threshold to detect cardiac amyloidosis. The patient's MCG was measured at various time points during therapy. At the time of diagnosis, the patient's MCG vector was 0.052. After starting therapy, the MCG vector increased to 0.090, but improved to 0.037 after 4 months of therapy. The MCG vector reached a value of 0.017 after 5 months of therapy with tafamidis, and then increased slightly after 27 months to a value of 0.027 (<0.052). Data from this case support our previous findings that MCG may be used to monitor treatment response non-invasively. Further research is needed to understand the unexpected changes in the MCG vector that were observed at the beginning of therapy and later in the course. Larger studies will be necessary to determine how these changes in the electromagnetic field of the heart are related to structural changes and how they affect clinical outcomes.
Collapse
Affiliation(s)
| | | | | | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Galappaththige S, Gray RA, Costa CM, Niederer S, Pathmanathan P. Credibility assessment of patient-specific computational modeling using patient-specific cardiac modeling as an exemplar. PLoS Comput Biol 2022; 18:e1010541. [PMID: 36215228 PMCID: PMC9550052 DOI: 10.1371/journal.pcbi.1010541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022] Open
Abstract
Reliable and robust simulation of individual patients using patient-specific models (PSMs) is one of the next frontiers for modeling and simulation (M&S) in healthcare. PSMs, which form the basis of digital twins, can be employed as clinical tools to, for example, assess disease state, predict response to therapy, or optimize therapy. They may also be used to construct virtual cohorts of patients, for in silico evaluation of medical product safety and/or performance. Methods and frameworks have recently been proposed for evaluating the credibility of M&S in healthcare applications. However, such efforts have generally been motivated by models of medical devices or generic patient models; how best to evaluate the credibility of PSMs has largely been unexplored. The aim of this paper is to understand and demonstrate the credibility assessment process for PSMs using patient-specific cardiac electrophysiological (EP) modeling as an exemplar. We first review approaches used to generate cardiac PSMs and consider how verification, validation, and uncertainty quantification (VVUQ) apply to cardiac PSMs. Next, we execute two simulation studies using a publicly available virtual cohort of 24 patient-specific ventricular models, the first a multi-patient verification study, the second investigating the impact of uncertainty in personalized and non-personalized inputs in a virtual cohort. We then use the findings from our analyses to identify how important characteristics of PSMs can be considered when assessing credibility with the approach of the ASME V&V40 Standard, accounting for PSM concepts such as inter- and intra-user variability, multi-patient and “every-patient” error estimation, uncertainty quantification in personalized vs non-personalized inputs, clinical validation, and others. The results of this paper will be useful to developers of cardiac and other medical image based PSMs, when assessing PSM credibility. Patient-specific models are computational models that have been personalized using data from a patient. After decades of research, recent computational, data science and healthcare advances have opened the door to the fulfilment of the enormous potential of such models, from truly personalized medicine to efficient and cost-effective testing of new medical products. However, reliability (credibility) of patient-specific models is key to their success, and there are currently no general guidelines for evaluating credibility of patient-specific models. Here, we consider how frameworks and model evaluation activities that have been developed for generic (not patient-specific) computational models, can be extended to patient specific models. We achieve this through a detailed analysis of the activities required to evaluate cardiac electrophysiological models, chosen as an exemplar field due to its maturity and the complexity of such models. This is the first paper on the topic of reliability of patient-specific models and will help pave the way to reliable and trusted patient-specific modeling across healthcare applications.
Collapse
Affiliation(s)
- Suran Galappaththige
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Richard A. Gray
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Caroline Mendonca Costa
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Steven Niederer
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Pras Pathmanathan
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Vondrak J, Penhaker M. Review of Processing Pathological Vectorcardiographic Records for the Detection of Heart Disease. Front Physiol 2022; 13:856590. [PMID: 36213240 PMCID: PMC9536877 DOI: 10.3389/fphys.2022.856590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Vectorcardiography (VCG) is another useful method that provides us with useful spatial information about the electrical activity of the heart. The use of vectorcardiography in clinical practice is not common nowadays, mainly due to the well-established 12-lead ECG system. However, VCG leads can be derived from standard 12-lead ECG systems using mathematical transformations. These derived or directly measured VCG records have proven to be a useful tool for diagnosing various heart diseases such as myocardial infarction, ventricular hypertrophy, myocardial scars, long QT syndrome, etc., where standard ECG does not achieve reliable accuracy within automated detection. With the development of computer technology in recent years, vectorcardiography is beginning to come to the forefront again. In this review we highlight the analysis of VCG records within the extraction of functional parameters for the detection of heart disease. We focus on methods of processing VCG functionalities and their use in given pathologies. Improving or combining current or developing new advanced signal processing methods can contribute to better and earlier detection of heart disease. We also focus on the most commonly used methods to derive a VCG from 12-lead ECG.
Collapse
Affiliation(s)
- Jaroslav Vondrak
- Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | | |
Collapse
|
7
|
Mendonca Costa C, Gemmell P, Elliott MK, Whitaker J, Campos FO, Strocchi M, Neic A, Gillette K, Vigmond E, Plank G, Razavi R, O'Neill M, Rinaldi CA, Bishop MJ. Determining anatomical and electrophysiological detail requirements for computational ventricular models of porcine myocardial infarction. Comput Biol Med 2022; 141:105061. [PMID: 34915331 PMCID: PMC8819160 DOI: 10.1016/j.compbiomed.2021.105061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/20/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Computational models of the heart built from cardiac MRI and electrophysiology (EP) data have shown promise for predicting the risk of and ablation targets for myocardial infarction (MI) related ventricular tachycardia (VT), as well as to predict paced activation sequences in heart failure patients. However, most recent studies have relied on low resolution imaging data and little or no EP personalisation, which may affect the accuracy of model-based predictions. OBJECTIVE To investigate the impact of model anatomy, MI scar morphology, and EP personalisation strategies on paced activation sequences and VT inducibility to determine the level of detail required to make accurate model-based predictions. METHODS Imaging and EP data were acquired from a cohort of six pigs with experimentally induced MI. Computational models of ventricular anatomy, incorporating MI scar, were constructed including bi-ventricular or left ventricular (LV) only anatomy, and MI scar morphology with varying detail. Tissue conductivities and action potential duration (APD) were fitted to 12-lead ECG data using the QRS duration and the QT interval, respectively, in addition to corresponding literature parameters. Paced activation sequences and VT induction were simulated. Simulated paced activation and VT inducibility were compared between models and against experimental data. RESULTS Simulations predict that the level of model anatomical detail has little effect on simulated paced activation, with all model predictions comparing closely with invasive EP measurements. However, detailed scar morphology from high-resolution images, bi-ventricular anatomy, and personalized tissue conductivities are required to predict experimental VT outcome. CONCLUSION This study provides clear guidance for model generation based on clinical data. While a representing high level of anatomical and scar detail will require high-resolution image acquisition, EP personalisation based on 12-lead ECG can be readily incorporated into modelling pipelines, as such data is widely available.
Collapse
Affiliation(s)
- Caroline Mendonca Costa
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK.
| | - Philip Gemmell
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Mark K Elliott
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - John Whitaker
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Fernando O Campos
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Marina Strocchi
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | | | - Karli Gillette
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Austria; Medical University of Graz, Austria and BioTechMed, Graz, Austria
| | - Edward Vigmond
- Institut de Rythmologie et de modélisation cardiaque (LIRYC), University of Bordeaux, France
| | - Gernot Plank
- Medical University of Graz, Austria and BioTechMed, Graz, Austria
| | - Reza Razavi
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Mark O'Neill
- Department of Cardiology, Guy's and St Thomas' Hospital, London, UK
| | - Christopher A Rinaldi
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK; Department of Cardiology, Guy's and St Thomas' Hospital, London, UK
| | - Martin J Bishop
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| |
Collapse
|
8
|
Gillette K, Gsell MAF, Prassl AJ, Karabelas E, Reiter U, Reiter G, Grandits T, Payer C, Štern D, Urschler M, Bayer JD, Augustin CM, Neic A, Pock T, Vigmond EJ, Plank G. A Framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Med Image Anal 2021; 71:102080. [PMID: 33975097 DOI: 10.1016/j.media.2021.102080] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
Cardiac digital twins (Cardiac Digital Twin (CDT)s) of human electrophysiology (Electrophysiology (EP)) are digital replicas of patient hearts derived from clinical data that match like-for-like all available clinical observations. Due to their inherent predictive potential, CDTs show high promise as a complementary modality aiding in clinical decision making and also in the cost-effective, safe and ethical testing of novel EP device therapies. However, current workflows for both the anatomical and functional twinning phases within CDT generation, referring to the inference of model anatomy and parameters from clinical data, are not sufficiently efficient, robust and accurate for advanced clinical and industrial applications. Our study addresses three primary limitations impeding the routine generation of high-fidelity CDTs by introducing; a comprehensive parameter vector encapsulating all factors relating to the ventricular EP; an abstract reference frame within the model allowing the unattended manipulation of model parameter fields; a novel fast-forward electrocardiogram (Electrocardiogram (ECG)) model for efficient and bio-physically-detailed simulation required for parameter inference. A novel workflow for the generation of CDTs is then introduced as an initial proof of concept. Anatomical twinning was performed within a reasonable time compatible with clinical workflows (<4h) for 12 subjects from clinically-attained magnetic resonance images. After assessment of the underlying fast forward ECG model against a gold standard bidomain ECG model, functional twinning of optimal parameters according to a clinically-attained 12 lead ECG was then performed using a forward Saltelli sampling approach for a single subject. The achieved results in terms of efficiency and fidelity demonstrate that our workflow is well-suited and viable for generating biophysically-detailed CDTs at scale.
Collapse
Affiliation(s)
- Karli Gillette
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias A F Gsell
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | - Anton J Prassl
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; Institute for Mathematics and Natural Sciences, University of Graz, Austria
| | - Ursula Reiter
- Department of Radiology, Medical University of Graz, Graz, Austria
| | - Gert Reiter
- Department of Radiology, Medical University of Graz, Graz, Austria; Research and Development, Siemens Healthcare Diagnostics, Graz, Austria
| | - Thomas Grandits
- Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | - Christian Payer
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | - Darko Štern
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | - Martin Urschler
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | - Jason D Bayer
- LIRYC Electrophysiology and Heart Modeling Institute, Bordeaux Foundation, Pessac, France
| | - Christoph M Augustin
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | | | - Thomas Pock
- Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | | | - Gernot Plank
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
9
|
Monaci S, Strocchi M, Rodero C, Gillette K, Whitaker J, Rajani R, Rinaldi CA, O'Neill M, Plank G, King A, Bishop MJ. In-silico pace-mapping using a detailed whole torso model and implanted electronic device electrograms for more efficient ablation planning. Comput Biol Med 2020; 125:104005. [PMID: 32971325 DOI: 10.1016/j.compbiomed.2020.104005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Pace-mapping is a commonly used electrophysiological (EP) procedure which aims to identify exit sites of ventricular tachycardia (VT) by matching ventricular activation patterns (assessed by QRS morphology) at specific pacing locations with activation during VT. However, long procedure durations and the need for VT induction render this technique non-optimal. To demonstrate the potential of in-silico pace-mapping, using stored electrogram (EGM) recordings of clinical VT from implanted devices to guide pre-procedural ablation planning. METHOD Six scar-related VT episodes were simulated in a 3D torso model reconstructed from computed tomography (CT) imaging data, including three different infarct anatomies mapped from infarcted porcine imaging data. In-silico pace-mapping was performed to localise VT exit sites and isthmuses by using 12-lead electrocardiogram (ECG) signals and different combinations of EGM sensing vectors from implanted devices, through the creation of conventional correlation maps and reference-less maps. RESULTS Our in-silico platform was successful in identifying VT exit sites for a variety of different VT morphologies from both ECG correlation maps and corresponding EGM maps, with the latter dependent upon the number of sensing vectors used. We also showed the added utility of both ECG and EGM reference-less pace-mapping for the identification of slow-conducting isthmuses, uncovering the optimal algorithm parameters. Finally, EGM-based pace-mapping was shown to be more dependent upon the mapped surface (epicardial/endocardial), relative to the VT origin. CONCLUSIONS In-silico pace-mapping can be used along with EGMs from implanted devices to localise VT ablation targets in pre-procedural planning.
Collapse
Affiliation(s)
| | | | | | | | | | - Ronak Rajani
- King's College London, London, United Kingdom; Guy's and St Thomas' Hospital, London, United Kingdom
| | - Christopher A Rinaldi
- King's College London, London, United Kingdom; Guy's and St Thomas' Hospital, London, United Kingdom
| | | | | | - Andrew King
- King's College London, London, United Kingdom
| | | |
Collapse
|