1
|
Jiang Q, Yu Y, Ren Y, Li S, He X. A review of deep learning methods for gastrointestinal diseases classification applied in computer-aided diagnosis system. Med Biol Eng Comput 2025; 63:293-320. [PMID: 39343842 DOI: 10.1007/s11517-024-03203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Recent advancements in deep learning have significantly improved the intelligent classification of gastrointestinal (GI) diseases, particularly in aiding clinical diagnosis. This paper seeks to review a computer-aided diagnosis (CAD) system for GI diseases, aligning with the actual clinical diagnostic process. It offers a comprehensive survey of deep learning (DL) techniques tailored for classifying GI diseases, addressing challenges inherent in complex scenes, clinical constraints, and technical obstacles encountered in GI imaging. Firstly, the esophagus, stomach, small intestine, and large intestine were located to determine the organs where the lesions were located. Secondly, location detection and classification of a single disease are performed on the premise that the organ's location corresponding to the image is known. Finally, comprehensive classification for multiple diseases is carried out. The results of single and multi-classification are compared to achieve more accurate classification outcomes, and a more effective computer-aided diagnosis system for gastrointestinal diseases was further constructed.
Collapse
Affiliation(s)
- Qianru Jiang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Yulin Yu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Yipei Ren
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Sheng Li
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Xiongxiong He
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China.
| |
Collapse
|
2
|
Souza LA, Passos LA, Santana MCS, Mendel R, Rauber D, Ebigbo A, Probst A, Messmann H, Papa JP, Palm C. Layer-selective deep representation to improve esophageal cancer classification. Med Biol Eng Comput 2024; 62:3355-3372. [PMID: 38848031 DOI: 10.1007/s11517-024-03142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/25/2024] [Indexed: 10/17/2024]
Abstract
Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. For this task, the deep learning techniques' black-box nature must somehow be lightened up to clarify its promising results. Hence, we aim to investigate the impact of the ResNet-50 deep convolutional design for Barrett's esophagus and adenocarcinoma classification. For such a task, and aiming at proposing a two-step learning technique, the output of each convolutional layer that composes the ResNet-50 architecture was trained and classified for further definition of layers that would provide more impact in the architecture. We showed that local information and high-dimensional features are essential to improve the classification for our task. Besides, we observed a significant improvement when the most discriminative layers expressed more impact in the training and classification of ResNet-50 for Barrett's esophagus and adenocarcinoma classification, demonstrating that both human knowledge and computational processing may influence the correct learning of such a problem.
Collapse
Affiliation(s)
- Luis A Souza
- Department of Informatics, Espírito Santo Federal University, Vitória, Brazil.
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Regensburg, Germany.
| | - Leandro A Passos
- CMI Lab, School of Engineering and Informatics, University of Wolverhampton, Wolverhampton, UK
| | | | - Robert Mendel
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Regensburg, Germany
| | - David Rauber
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Regensburg, Germany
| | - Alanna Ebigbo
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Andreas Probst
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - João Paulo Papa
- Department of Computing, São Paulo State University, Bauru, Brazil
| | - Christoph Palm
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Regensburg, Germany
| |
Collapse
|
3
|
Fujii Y, Uchida D, Sato R, Obata T, Akihiro M, Miyamoto K, Morimoto K, Terasawa H, Yamazaki T, Matsumoto K, Horiguchi S, Tsutsumi K, Kato H, Inoue H, Cho T, Tanimoto T, Ohto A, Kawahara Y, Otsuka M. Effectiveness of data-augmentation on deep learning in evaluating rapid on-site cytopathology at endoscopic ultrasound-guided fine needle aspiration. Sci Rep 2024; 14:22441. [PMID: 39341885 PMCID: PMC11439075 DOI: 10.1038/s41598-024-72312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
Rapid on-site cytopathology evaluation (ROSE) has been considered an effective method to increase the diagnostic ability of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA); however, ROSE is unavailable in most institutes worldwide due to the shortage of cytopathologists. To overcome this situation, we created an artificial intelligence (AI)-based system (the ROSE-AI system), which was trained with the augmented data to evaluate the slide images acquired by EUS-FNA. This study aimed to clarify the effects of such data-augmentation on establishing an effective ROSE-AI system by comparing the efficacy of various data-augmentation techniques. The ROSE-AI system was trained with increased data obtained by the various data-augmentation techniques, including geometric transformation, color space transformation, and kernel filtering. By performing five-fold cross-validation, we compared the efficacy of each data-augmentation technique on the increasing diagnostic abilities of the ROSE-AI system. We collected 4059 divided EUS-FNA slide images from 36 patients with pancreatic cancer and nine patients with non-pancreatic cancer. The diagnostic ability of the ROSE-AI system without data augmentation had a sensitivity, specificity, and accuracy of 87.5%, 79.7%, and 83.7%, respectively. While, some data-augmentation techniques decreased diagnostic ability, the ROSE-AI system trained only with the augmented data using the geometric transformation technique had the highest diagnostic accuracy (88.2%). We successfully developed a prototype ROSE-AI system with high diagnostic ability. Each data-augmentation technique may have various compatibilities with AI-mediated diagnostics, and the geometric transformation was the most effective for the ROSE-AI system.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan.
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Ryosuke Sato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Taisuke Obata
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Matsumi Akihiro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Kazuya Miyamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Kosaku Morimoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Hiroyuki Terasawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Tatsuhiro Yamazaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Kazuyuki Matsumoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Koichiro Tsutsumi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| | - Hirofumi Inoue
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Ten Cho
- Business Strategy Division, Ryobi Systems Co., Ltd., Okayama, Japan
| | | | - Akimitsu Ohto
- Business Strategy Division, Ryobi Systems Co., Ltd., Okayama, Japan
| | - Yoshiro Kawahara
- Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, Okayama, Japan
| |
Collapse
|
4
|
Janaki R, Lakshmi D. Hybrid model-based early diagnosis of esophageal disorders using convolutional neural network and refined logistic regression. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING 2024; 2024:19. [DOI: 10.1186/s13640-024-00634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/28/2024] [Indexed: 01/04/2025]
|
5
|
Lin Q, Tan W, Cai S, Yan B, Li J, Zhong Y. Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:11142-11156. [PMID: 37028330 DOI: 10.1109/tnnls.2023.3248804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lesions of early cancers often show flat, small, and isochromatic characteristics in medical endoscopy images, which are difficult to be captured. By analyzing the differences between the internal and external features of the lesion area, we propose a lesion-decoupling-based segmentation (LDS) network for assisting early cancer diagnosis. We introduce a plug-and-play module called self-sampling similar feature disentangling module (FDM) to obtain accurate lesion boundaries. Then, we propose a feature separation loss (FSL) function to separate pathological features from normal ones. Moreover, since physicians make diagnoses with multimodal data, we propose a multimodal cooperative segmentation network with two different modal images as input: white-light images (WLIs) and narrowband images (NBIs). Our FDM and FSL show a good performance for both single-modal and multimodal segmentations. Extensive experiments on five backbones prove that our FDM and FSL can be easily applied to different backbones for a significant lesion segmentation accuracy improvement, and the maximum increase of mean Intersection over Union (mIoU) is 4.58. For colonoscopy, we can achieve up to mIoU of 91.49 on our Dataset A and 84.41 on the three public datasets. For esophagoscopy, mIoU of 64.32 is best achieved on the WLI dataset and 66.31 on the NBI dataset.
Collapse
|
6
|
Hou M, Wang J, Liu T, Li Z, Hounye AH, Liu X, Wang K, Chen S. A graph-optimized deep learning framework for recognition of Barrett’s esophagus and reflux esophagitis. MULTIMEDIA TOOLS AND APPLICATIONS 2024; 83:83747-83767. [DOI: 10.1007/s11042-024-18910-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 01/03/2025]
|
7
|
Cui R, Wang L, Lin L, Li J, Lu R, Liu S, Liu B, Gu Y, Zhang H, Shang Q, Chen L, Tian D. Deep Learning in Barrett's Esophagus Diagnosis: Current Status and Future Directions. Bioengineering (Basel) 2023; 10:1239. [PMID: 38002363 PMCID: PMC10669008 DOI: 10.3390/bioengineering10111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Barrett's esophagus (BE) represents a pre-malignant condition characterized by abnormal cellular proliferation in the distal esophagus. A timely and accurate diagnosis of BE is imperative to prevent its progression to esophageal adenocarcinoma, a malignancy associated with a significantly reduced survival rate. In this digital age, deep learning (DL) has emerged as a powerful tool for medical image analysis and diagnostic applications, showcasing vast potential across various medical disciplines. In this comprehensive review, we meticulously assess 33 primary studies employing varied DL techniques, predominantly featuring convolutional neural networks (CNNs), for the diagnosis and understanding of BE. Our primary focus revolves around evaluating the current applications of DL in BE diagnosis, encompassing tasks such as image segmentation and classification, as well as their potential impact and implications in real-world clinical settings. While the applications of DL in BE diagnosis exhibit promising results, they are not without challenges, such as dataset issues and the "black box" nature of models. We discuss these challenges in the concluding section. Essentially, while DL holds tremendous potential to revolutionize BE diagnosis, addressing these challenges is paramount to harnessing its full capacity and ensuring its widespread application in clinical practice.
Collapse
Affiliation(s)
- Ruichen Cui
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Lei Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
- West China School of Nursing, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Lin Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
- West China School of Nursing, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jie Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
- West China School of Nursing, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Runda Lu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Shixiang Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Bowei Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Yimin Gu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Hanlu Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Qixin Shang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| | - Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; (R.C.); (L.W.); (L.L.); (J.L.); (R.L.); (S.L.); (B.L.); (Y.G.); (H.Z.); (Q.S.)
| |
Collapse
|
8
|
Jacobs F, D'Amico S, Benvenuti C, Gaudio M, Saltalamacchia G, Miggiano C, De Sanctis R, Della Porta MG, Santoro A, Zambelli A. Opportunities and Challenges of Synthetic Data Generation in Oncology. JCO Clin Cancer Inform 2023; 7:e2300045. [PMID: 37535875 DOI: 10.1200/cci.23.00045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 08/05/2023] Open
Abstract
Widespread interest in artificial intelligence (AI) in health care has focused mainly on deductive systems that analyze available real-world data to discover patterns not otherwise visible. Generative adversarial network, a new type of inductive AI, has recently evolved to generate high-fidelity virtual synthetic data (SD) trained on relatively limited real-world information. The AI system is fed with a collection of real data, and it learns to generate new augmented data while maintaining the general characteristics of the original data set. The use of SD to enhance clinical research and protect patient privacy has drawn a lot of interest in medicine and in the complex field of oncology. This article summarizes the main characteristics of this innovative technology and critically discusses how it can be used to accelerate data access for secondary purposes, providing an overview of the opportunities and challenges of SD generation for clinical cancer research and health care.
Collapse
Affiliation(s)
- Flavia Jacobs
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Istituto Clinico Humanitas, Milan, Italy
| | | | - Chiara Benvenuti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Istituto Clinico Humanitas, Milan, Italy
| | - Mariangela Gaudio
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Istituto Clinico Humanitas, Milan, Italy
| | | | - Chiara Miggiano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Istituto Clinico Humanitas, Milan, Italy
| | - Rita De Sanctis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Istituto Clinico Humanitas, Milan, Italy
| | - Matteo Giovanni Della Porta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Istituto Clinico Humanitas, Milan, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Istituto Clinico Humanitas, Milan, Italy
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Istituto Clinico Humanitas, Milan, Italy
| |
Collapse
|
9
|
Hosseini F, Asadi F, Emami H, Harari RE. Machine learning applications for early detection of esophageal cancer: a systematic review. BMC Med Inform Decis Mak 2023; 23:124. [PMID: 37460991 PMCID: PMC10351192 DOI: 10.1186/s12911-023-02235-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Esophageal cancer (EC) is a significant global health problem, with an estimated 7th highest incidence and 6th highest mortality rate. Timely diagnosis and treatment are critical for improving patients' outcomes, as over 40% of patients with EC are diagnosed after metastasis. Recent advances in machine learning (ML) techniques, particularly in computer vision, have demonstrated promising applications in medical image processing, assisting clinicians in making more accurate and faster diagnostic decisions. Given the significance of early detection of EC, this systematic review aims to summarize and discuss the current state of research on ML-based methods for the early detection of EC. METHODS We conducted a comprehensive systematic search of five databases (PubMed, Scopus, Web of Science, Wiley, and IEEE) using search terms such as "ML", "Deep Learning (DL (", "Neural Networks (NN)", "Esophagus", "EC" and "Early Detection". After applying inclusion and exclusion criteria, 31 articles were retained for full review. RESULTS The results of this review highlight the potential of ML-based methods in the early detection of EC. The average accuracy of the reviewed methods in the analysis of endoscopic and computed tomography (CT (images of the esophagus was over 89%, indicating a high impact on early detection of EC. Additionally, the highest percentage of clinical images used in the early detection of EC with the use of ML was related to white light imaging (WLI) images. Among all ML techniques, methods based on convolutional neural networks (CNN) achieved higher accuracy and sensitivity in the early detection of EC compared to other methods. CONCLUSION Our findings suggest that ML methods may improve accuracy in the early detection of EC, potentially supporting radiologists, endoscopists, and pathologists in diagnosis and treatment planning. However, the current literature is limited, and more studies are needed to investigate the clinical applications of these methods in early detection of EC. Furthermore, many studies suffer from class imbalance and biases, highlighting the need for validation of detection algorithms across organizations in longitudinal studies.
Collapse
Affiliation(s)
- Farhang Hosseini
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Emami
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Anaam A, Al-Antari MA, Hussain J, Abdel Samee N, Alabdulhafith M, Gofuku A. Deep Active Learning for Automatic Mitotic Cell Detection on HEp-2 Specimen Medical Images. Diagnostics (Basel) 2023; 13:diagnostics13081416. [PMID: 37189517 DOI: 10.3390/diagnostics13081416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Identifying Human Epithelial Type 2 (HEp-2) mitotic cells is a crucial procedure in anti-nuclear antibodies (ANAs) testing, which is the standard protocol for detecting connective tissue diseases (CTD). Due to the low throughput and labor-subjectivity of the ANAs' manual screening test, there is a need to develop a reliable HEp-2 computer-aided diagnosis (CAD) system. The automatic detection of mitotic cells from the microscopic HEp-2 specimen images is an essential step to support the diagnosis process and enhance the throughput of this test. This work proposes a deep active learning (DAL) approach to overcoming the cell labeling challenge. Moreover, deep learning detectors are tailored to automatically identify the mitotic cells directly in the entire microscopic HEp-2 specimen images, avoiding the segmentation step. The proposed framework is validated using the I3A Task-2 dataset over 5-fold cross-validation trials. Using the YOLO predictor, promising mitotic cell prediction results are achieved with an average of 90.011% recall, 88.307% precision, and 81.531% mAP. Whereas, average scores of 86.986% recall, 85.282% precision, and 78.506% mAP are obtained using the Faster R-CNN predictor. Employing the DAL method over four labeling rounds effectively enhances the accuracy of the data annotation, and hence, improves the prediction performance. The proposed framework could be practically applicable to support medical personnel in making rapid and accurate decisions about the mitotic cells' existence.
Collapse
Affiliation(s)
- Asaad Anaam
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Mugahed A Al-Antari
- Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Jamil Hussain
- Department of Data Science, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maali Alabdulhafith
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Akio Gofuku
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
11
|
Magalhães B, Neto A, Cunha A. Generative Adversarial Networks for Augmenting Endoscopy Image Datasets of Stomach Precancerous Lesions: A Review. IEEE ACCESS 2023; 11:136292-136307. [DOI: 10.1109/access.2023.3338545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Bruno Magalhães
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - Alexandre Neto
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - António Cunha
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| |
Collapse
|
12
|
Zhou Y, Yuan X, Zhang X, Liu W, Wu Y, Yen GG, Hu B, Yi Z. Evolutionary Neural Architecture Search for Automatic Esophageal Lesion Identification and Segmentation. IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 2022; 3:436-450. [DOI: 10.1109/tai.2021.3134600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yao Zhou
- Center of Intelligent Medicine, College of Computer Science, Sichuan University, Chengdu, China
| | - Xianglei Yuan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaozhi Zhang
- Center of Intelligent Medicine, College of Computer Science, Sichuan University, Chengdu, China
| | - Wei Liu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- Center of Intelligent Medicine, College of Computer Science, Sichuan University, Chengdu, China
| | - Gary G. Yen
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Yi
- Center of Intelligent Medicine, College of Computer Science, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Guan Q, Chen Y, Wei Z, Heidari AA, Hu H, Yang XH, Zheng J, Zhou Q, Chen H, Chen F. Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN. Comput Biol Med 2022; 145:105444. [PMID: 35421795 DOI: 10.1016/j.compbiomed.2022.105444] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/31/2021] [Accepted: 03/20/2022] [Indexed: 12/18/2022]
Abstract
Lesion detectors based on deep learning can assist doctors in diagnosing diseases. However, the performance of current detectors is likely to be unsatisfactory due to the scarcity of training samples. Therefore, it is beneficial to use image generation to augment the training set of a detector. However, when the imaging texture of the medical image is relatively delicate, the synthesized image generated by an existing method may be too poor in quality to meet the training requirements of the detectors. In this regard, a medical image augmentation method, namely, a texture-constrained multichannel progressive generative adversarial network (TMP-GAN), is proposed in this work. TMP-GAN uses joint training of multiple channels to effectively avoid the typical shortcomings of the current generation methods. It also uses an adversarial learning-based texture discrimination loss to further improve the fidelity of the synthesized images. In addition, TMP-GAN employs a progressive generation mechanism to steadily improve the accuracy of the medical image synthesizer. Experiments on the publicly available dataset CBIS-DDMS and our pancreatic tumor dataset show that the precision/recall/F1-score of the detector trained on the TMP-GAN augmented dataset improves by 2.59%/2.70%/2.77% and 2.44%/2.06%/2.36%, respectively, compared to the optimal results of other data augmentation methods. The FROC curve of the detector is also better than the curve from the contrast-augmented trained dataset. Therefore, we believe the proposed TMP-GAN is a practical technique to efficiently implement lesion detection case studies.
Collapse
Affiliation(s)
- Qiu Guan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Yizhou Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Zihan Wei
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Haigen Hu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Jianwei Zheng
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Feng Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Chen Y, Yang XH, Wei Z, Heidari AA, Zheng N, Li Z, Chen H, Hu H, Zhou Q, Guan Q. Generative Adversarial Networks in Medical Image augmentation: A review. Comput Biol Med 2022; 144:105382. [PMID: 35276550 DOI: 10.1016/j.compbiomed.2022.105382] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022]
Abstract
OBJECT With the development of deep learning, the number of training samples for medical image-based diagnosis and treatment models is increasing. Generative Adversarial Networks (GANs) have attracted attention in medical image processing due to their excellent image generation capabilities and have been widely used in data augmentation. In this paper, a comprehensive and systematic review and analysis of medical image augmentation work are carried out, and its research status and development prospects are reviewed. METHOD This paper reviews 105 medical image augmentation related papers, which mainly collected by ELSEVIER, IEEE Xplore, and Springer from 2018 to 2021. We counted these papers according to the parts of the organs corresponding to the images, and sorted out the medical image datasets that appeared in them, the loss function in model training, and the quantitative evaluation metrics of image augmentation. At the same time, we briefly introduce the literature collected in three journals and three conferences that have received attention in medical image processing. RESULT First, we summarize the advantages of various augmentation models, loss functions, and evaluation metrics. Researchers can use this information as a reference when designing augmentation tasks. Second, we explore the relationship between augmented models and the amount of the training set, and tease out the role that augmented models may play when the quality of the training set is limited. Third, the statistical number of papers shows that the development momentum of this research field remains strong. Furthermore, we discuss the existing limitations of this type of model and suggest possible research directions. CONCLUSION We discuss GAN-based medical image augmentation work in detail. This method effectively alleviates the challenge of limited training samples for medical image diagnosis and treatment models. It is hoped that this review will benefit researchers interested in this field.
Collapse
Affiliation(s)
- Yizhou Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Zihan Wei
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Zhicheng Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Haigen Hu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Qiu Guan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
15
|
Evaluation of Machine Learning Algorithms for Early Diagnosis of Deep Venous Thrombosis. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS 2022. [DOI: 10.3390/mca27020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deep venous thrombosis (DVT) is a disease that must be diagnosed quickly, as it can trigger the death of patients. Nowadays, one can find different ways to determine it, including clinical scoring, D-dimer, ultrasonography, etc. Recently, scientists have focused efforts on using machine learning (ML) and neural networks for disease diagnosis, progressively increasing the accuracy and efficacy. Patients with suspected DVT have no apparent symptoms. Using pattern recognition techniques, aiding good timely diagnosis, as well as well-trained ML models help to make good decisions and validation. The aim of this paper is to propose several ML models for a more efficient and reliable DVT diagnosis through its implementation on an edge device for the development of instruments that are smart, portable, reliable, and cost-effective. The dataset was obtained from a state-of-the-art article. It is divided into 85% for training and cross-validation and 15% for testing. The input data in this study are the Wells criteria, the patient’s age, and the patient’s gender. The output data correspond to the patient’s diagnosis. This study includes the evaluation of several classifiers such as Decision Trees (DT), Extra Trees (ET), K-Nearest Neighbor (KNN), Multi-Layer Perceptron Neural Network (MLP-NN), Random Forest (RF), and Support Vector Machine (SVM). Finally, the implementation of these ML models on a high-performance embedded system is proposed to develop an intelligent system for early DVT diagnosis. It is reliable, portable, open source, and low cost. The performance of different ML algorithms was evaluated, where KNN achieved the highest accuracy of 90.4% and specificity of 80.66% implemented on personal computer (PC) and Raspberry Pi 4 (RPi4). The accuracy of all trained models on PC and Raspberry Pi 4 is greater than 85%, while the area under the curve (AUC) values are between 0.81 and 0.86. In conclusion, as compared to traditional methods, the best ML classifiers are effective at predicting DVT in an early and efficient manner.
Collapse
|
16
|
Visaggi P, Barberio B, Gregori D, Azzolina D, Martinato M, Hassan C, Sharma P, Savarino E, de Bortoli N. Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases. Aliment Pharmacol Ther 2022; 55:528-540. [PMID: 35098562 PMCID: PMC9305819 DOI: 10.1111/apt.16778] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Artificial intelligence (AI) has recently been applied to endoscopy and questionnaires for the evaluation of oesophageal diseases (ODs). AIM We performed a systematic review with meta-analysis to evaluate the performance of AI in the diagnosis of malignant and benign OD. METHODS We searched MEDLINE, EMBASE, EMBASE Classic and the Cochrane Library. A bivariate random-effect model was used to calculate pooled diagnostic efficacy of AI models and endoscopists. The reference tests were histology for neoplasms and the clinical and instrumental diagnosis for gastro-oesophageal reflux disease (GERD). The pooled area under the summary receiver operating characteristic (AUROC), sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR) and diagnostic odds ratio (DOR) were estimated. RESULTS For the diagnosis of Barrett's neoplasia, AI had AUROC of 0.90, sensitivity 0.89, specificity 0.86, PLR 6.50, NLR 0.13 and DOR 50.53. AI models' performance was comparable with that of endoscopists (P = 0.35). For the diagnosis of oesophageal squamous cell carcinoma, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.97, 0.95, 0.92, 12.65, 0.05 and DOR 258.36, respectively. In this task, AI performed better than endoscopists although without statistically significant differences. In the detection of abnormal intrapapillary capillary loops, the performance of AI was: AUROC 0.98, sensitivity 0.94, specificity 0.94, PLR 14.75, NLR 0.07 and DOR 225.83. For the diagnosis of GERD based on questionnaires, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.99, 0.97, 0.97, 38.26, 0.03 and 1159.6, respectively. CONCLUSIONS AI demonstrated high performance in the clinical and endoscopic diagnosis of OD.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Brigida Barberio
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Danila Azzolina
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
- Department of Medical ScienceUniversity of FerraraFerraraItaly
| | - Matteo Martinato
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas UniversityVia Rita Levi Montalcini 420072 Pieve Emanuele, MilanItaly
- IRCCS Humanitas Research Hospitalvia Manzoni 5620089 Rozzano, MilanItaly
| | - Prateek Sharma
- University of Kansas School of Medicine and VA Medical CenterKansas CityMissouriUSA
| | - Edoardo Savarino
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Nicola de Bortoli
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| |
Collapse
|
17
|
Visaggi P, de Bortoli N, Barberio B, Savarino V, Oleas R, Rosi EM, Marchi S, Ribolsi M, Savarino E. Artificial Intelligence in the Diagnosis of Upper Gastrointestinal Diseases. J Clin Gastroenterol 2022; 56:23-35. [PMID: 34739406 PMCID: PMC9988236 DOI: 10.1097/mcg.0000000000001629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Artificial intelligence (AI) has enormous potential to support clinical routine workflows and therefore is gaining increasing popularity among medical professionals. In the field of gastroenterology, investigations on AI and computer-aided diagnosis (CAD) systems have mainly focused on the lower gastrointestinal (GI) tract. However, numerous CAD tools have been tested also in upper GI disorders showing encouraging results. The main application of AI in the upper GI tract is endoscopy; however, the need to analyze increasing loads of numerical and categorical data in short times has pushed researchers to investigate applications of AI systems in other upper GI settings, including gastroesophageal reflux disease, eosinophilic esophagitis, and motility disorders. AI and CAD systems will be increasingly incorporated into daily clinical practice in the coming years, thus at least basic notions will be soon required among physicians. For noninsiders, the working principles and potential of AI may be as fascinating as obscure. Accordingly, we reviewed systematic reviews, meta-analyses, randomized controlled trials, and original research articles regarding the performance of AI in the diagnosis of both malignant and benign esophageal and gastric diseases, also discussing essential characteristics of AI.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Nicola de Bortoli
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Brigida Barberio
- Department of Surgery, Oncology, and Gastroenterology, Division of Gastroenterology, University of Padua, Padua
| | - Vincenzo Savarino
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, Genoa
| | - Roberto Oleas
- Ecuadorean Institute of Digestive Diseases, Guayaquil, Ecuador
| | - Emma M. Rosi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Santino Marchi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Mentore Ribolsi
- Department of Digestive Diseases, Campus Bio Medico University of Rome, Roma, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology, and Gastroenterology, Division of Gastroenterology, University of Padua, Padua
| |
Collapse
|
18
|
van der Putten J, van der Sommen F. AIM in Barrett’s Esophagus. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Zhuang H, Zhang J, Liao F. A systematic review on application of deep learning in digestive system image processing. THE VISUAL COMPUTER 2021; 39:2207-2222. [PMID: 34744231 PMCID: PMC8557108 DOI: 10.1007/s00371-021-02322-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 05/07/2023]
Abstract
With the advent of the big data era, the application of artificial intelligence represented by deep learning in medicine has become a hot topic. In gastroenterology, deep learning has accomplished remarkable accomplishments in endoscopy, imageology, and pathology. Artificial intelligence has been applied to benign gastrointestinal tract lesions, early cancer, tumors, inflammatory bowel diseases, livers, pancreas, and other diseases. Computer-aided diagnosis significantly improve diagnostic accuracy and reduce physicians' workload and provide a shred of evidence for clinical diagnosis and treatment. In the near future, artificial intelligence will have high application value in the field of medicine. This paper mainly summarizes the latest research on artificial intelligence in diagnosing and treating digestive system diseases and discussing artificial intelligence's future in digestive system diseases. We sincerely hope that our work can become a stepping stone for gastroenterologists and computer experts in artificial intelligence research and facilitate the application and development of computer-aided image processing technology in gastroenterology.
Collapse
Affiliation(s)
- Huangming Zhuang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Jixiang Zhang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| |
Collapse
|
20
|
de Souza LA, Mendel R, Strasser S, Ebigbo A, Probst A, Messmann H, Papa JP, Palm C. Convolutional Neural Networks for the evaluation of cancer in Barrett's esophagus: Explainable AI to lighten up the black-box. Comput Biol Med 2021; 135:104578. [PMID: 34171639 DOI: 10.1016/j.compbiomed.2021.104578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/10/2023]
Abstract
Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their level of accountability and transparency must be provided in such evaluations. The reliability related to machine learning predictions must be explained and interpreted, especially if diagnosis support is addressed. For this task, the black-box nature of deep learning techniques must be lightened up to transfer its promising results into clinical practice. Hence, we aim to investigate the use of explainable artificial intelligence techniques to quantitatively highlight discriminative regions during the classification of early-cancerous tissues in Barrett's esophagus-diagnosed patients. Four Convolutional Neural Network models (AlexNet, SqueezeNet, ResNet50, and VGG16) were analyzed using five different interpretation techniques (saliency, guided backpropagation, integrated gradients, input × gradients, and DeepLIFT) to compare their agreement with experts' previous annotations of cancerous tissue. We could show that saliency attributes match best with the manual experts' delineations. Moreover, there is moderate to high correlation between the sensitivity of a model and the human-and-computer agreement. The results also lightened that the higher the model's sensitivity, the stronger the correlation of human and computational segmentation agreement. We observed a relevant relation between computational learning and experts' insights, demonstrating how human knowledge may influence the correct computational learning.
Collapse
Affiliation(s)
- Luis A de Souza
- Department of Computing, São Carlos Federal University - UFSCar, Brazil; Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Germany
| | - Robert Mendel
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Germany
| | - Sophia Strasser
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Germany
| | - Alanna Ebigbo
- Medizinische Klinik III, Universitätsklinikum Augsburg, Germany
| | - Andreas Probst
- Medizinische Klinik III, Universitätsklinikum Augsburg, Germany
| | - Helmut Messmann
- Medizinische Klinik III, Universitätsklinikum Augsburg, Germany
| | - João P Papa
- Department of Computing, São Paulo State University, UNESP, Brazil.
| | - Christoph Palm
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Germany; Regensburg Center of Health Sciences and Technology (RCHST), OTH Regensburg, Germany
| |
Collapse
|
21
|
Yan T, Wong PK, Qin YY. Deep learning for diagnosis of precancerous lesions in upper gastrointestinal endoscopy: A review. World J Gastroenterol 2021; 27:2531-2544. [PMID: 34092974 PMCID: PMC8160615 DOI: 10.3748/wjg.v27.i20.2531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Upper gastrointestinal (GI) cancers are the leading cause of cancer-related deaths worldwide. Early identification of precancerous lesions has been shown to minimize the incidence of GI cancers and substantiate the vital role of screening endoscopy. However, unlike GI cancers, precancerous lesions in the upper GI tract can be subtle and difficult to detect. Artificial intelligence techniques, especially deep learning algorithms with convolutional neural networks, might help endoscopists identify the precancerous lesions and reduce interobserver variability. In this review, a systematic literature search was undertaken of the Web of Science, PubMed, Cochrane Library and Embase, with an emphasis on the deep learning-based diagnosis of precancerous lesions in the upper GI tract. The status of deep learning algorithms in upper GI precancerous lesions has been systematically summarized. The challenges and recommendations targeting this field are comprehensively analyzed for future research.
Collapse
Affiliation(s)
- Tao Yan
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - Ye-Ying Qin
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
22
|
Dou L, Yang F, Xu L, Zou Q. A comprehensive review of the imbalance classification of protein post-translational modifications. Brief Bioinform 2021; 22:6217722. [PMID: 33834199 DOI: 10.1093/bib/bbab089] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Post-translational modifications (PTMs) play significant roles in regulating protein structure, activity and function, and they are closely involved in various pathologies. Therefore, the identification of associated PTMs is the foundation of in-depth research on related biological mechanisms, disease treatments and drug design. Due to the high cost and time consumption of high-throughput sequencing techniques, developing machine learning-based predictors has been considered an effective approach to rapidly recognize potential modified sites. However, the imbalanced distribution of true and false PTM sites, namely, the data imbalance problem, largely effects the reliability and application of prediction tools. In this article, we conduct a systematic survey of the research progress in the imbalanced PTMs classification. First, we describe the modeling process in detail and outline useful data imbalance solutions. Then, we summarize the recently proposed bioinformatics tools based on imbalanced PTM data and simultaneously build a convenient website, ImClassi_PTMs (available at lab.malab.cn/∼dlj/ImbClassi_PTMs/), to facilitate the researchers to view. Moreover, we analyze the challenges of current computational predictors and propose some suggestions to improve the efficiency of imbalance learning. We hope that this work will provide comprehensive knowledge of imbalanced PTM recognition and contribute to advanced predictors in the future.
Collapse
Affiliation(s)
- Lijun Dou
- University of Electronic Science and Technology of China and the Shenzhen Polytechnic, China
| | - Fenglong Yang
- University of Electronic Science and Technology of China and the Shenzhen Polytechnic, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
23
|
van der Putten J, van der Sommen F. AIM in Barrett’s Esophagus. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
An Artificial Neural Network Approach and a Data Augmentation Algorithm to Systematize the Diagnosis of Deep-Vein Thrombosis by Using Wells’ Criteria. ELECTRONICS 2020. [DOI: 10.3390/electronics9111810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of a back-propagation artificial neural network (ANN) to systematize the reliability of a Deep Vein Thrombosis (DVT) diagnostic by using Wells’ criteria is introduced herein. In this paper, a new ANN model is proposed to improve the Accuracy when dealing with a highly unbalanced dataset. To create the training dataset, a new data augmentation algorithm based on statistical data known as the prevalence of DVT of real cases reported in literature and from the public hospital is proposed. The above is used to generate one dataset of 10,000 synthetic cases. Each synthetic case has nine risk factors according to Wells’ criteria and also the use of two additional factors, such as gender and age, is proposed. According to interviews with medical specialists, a training scheme was established. In addition, a new algorithm is presented to improve the Accuracy and Sensitivity/Recall. According to the proposed algorithm, two thresholds of decision were found, the first one is 0.484, which is to improve Accuracy. The other one is 0.138 to improve Sensitivity/Recall. The Accuracy achieved is 90.99%, which is greater than that obtained with other related machine learning methods. The proposed ANN model was validated performing the k-fold cross validation technique using a dataset with 10,000 synthetic cases. The test was performed by using 59 real cases obtained from a regional hospital, achieving an Accuracy of 98.30%.
Collapse
|