1
|
Bonnerjee D, Chakraborty S, Mukherjee B, Basu R, Paul A, Bagh S. Multicellular artificial neural network-type architectures demonstrate computational problem solving. Nat Chem Biol 2024; 20:1524-1534. [PMID: 39285005 DOI: 10.1038/s41589-024-01711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/26/2024] [Indexed: 10/27/2024]
Abstract
Here, we report a modular multicellular system created by mixing and matching discrete engineered bacterial cells. This system can be designed to solve multiple computational decision problems. The modular system is based on a set of engineered bacteria that are modeled as an 'artificial neurosynapse' that, in a coculture, formed a single-layer artificial neural network-type architecture that can perform computational tasks. As a demonstration, we constructed devices that function as a full subtractor and a full adder. The system is also capable of solving problems such as determining if a number between 0 and 9 is a prime number and if a letter between A and L is a vowel. Finally, we built a system that determines the maximum number of pieces of a pie that can be made for a given number of straight cuts. This work may have importance in biocomputer technology development and multicellular synthetic biology.
Collapse
Affiliation(s)
- Deepro Bonnerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Block AF, Sector-I, Bidhannagar, Kolkata, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Saswata Chakraborty
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Block AF, Sector-I, Bidhannagar, Kolkata, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Biyas Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Block AF, Sector-I, Bidhannagar, Kolkata, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Ritwika Basu
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Block AF, Sector-I, Bidhannagar, Kolkata, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Abhishek Paul
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Block AF, Sector-I, Bidhannagar, Kolkata, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Sangram Bagh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Block AF, Sector-I, Bidhannagar, Kolkata, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India.
| |
Collapse
|
2
|
Moškon M, Mraz M. Programmable evolution of computing circuits in cellular populations. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|