1
|
Meijerink LM, Dunias ZS, Leeuwenberg AM, de Hond AAH, Jenkins DA, Martin GP, Sperrin M, Peek N, Spijker R, Hooft L, Moons KGM, van Smeden M, Schuit E. Updating methods for artificial intelligence-based clinical prediction models: a scoping review. J Clin Epidemiol 2025; 178:111636. [PMID: 39662644 DOI: 10.1016/j.jclinepi.2024.111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVES To give an overview of methods for updating artificial intelligence (AI)-based clinical prediction models based on new data. STUDY DESIGN AND SETTING We comprehensively searched Scopus and Embase up to August 2022 for articles that addressed developments, descriptions, or evaluations of prediction model updating methods. We specifically focused on articles in the medical domain involving AI-based prediction models that were updated based on new data, excluding regression-based updating methods as these have been extensively discussed elsewhere. We categorized and described the identified methods used to update the AI-based prediction model as well as the use cases in which they were used. RESULTS We included 78 articles. The majority of the included articles discussed updating for neural network methods (93.6%) with medical images as input data (65.4%). In many articles (51.3%) existing, pretrained models for broad tasks were updated to perform specialized clinical tasks. Other common reasons for model updating were to address changes in the data over time and cross-center differences; however, more unique use cases were also identified, such as updating a model from a broad population to a specific individual. We categorized the identified model updating methods into four categories: neural network-specific methods (described in 92.3% of the articles), ensemble-specific methods (2.5%), model-agnostic methods (9.0%), and other (1.3%). Variations of neural network-specific methods are further categorized based on the following: (1) the part of the original neural network that is kept, (2) whether and how the original neural network is extended with new parameters, and (3) to what extent the original neural network parameters are adjusted to the new data. The most frequently occurring method (n = 30) involved selecting the first layer(s) of an existing neural network, appending new, randomly initialized layers, and then optimizing the entire neural network. CONCLUSION We identified many ways to adjust or update AI-based prediction models based on new data, within a large variety of use cases. Updating methods for AI-based prediction models other than neural networks (eg, random forest) appear to be underexplored in clinical prediction research. PLAIN LANGUAGE SUMMARY AI-based prediction models are increasingly used in health care, helping clinicians with diagnosing diseases, guiding treatment decisions, and informing patients. However, these prediction models do not always work well when applied to hospitals, patient populations, or times different from those used to develop the models. Developing new models for every situation is neither practical nor desired, as it wastes resources, time, and existing knowledge. A more efficient approach is to adjust existing models to new contexts ('updating'), but there is limited guidance on how to do this for AI-based clinical prediction models. To address this, we reviewed 78 studies in detail to understand how researchers are currently updating AI-based clinical prediction models, and the types of situations in which these updating methods are used. Our findings provide a comprehensive overview of the available methods to update existing models. This is intended to serve as guidance and inspiration for researchers. Ultimately, this can lead to better reuse of existing models and improve the quality and efficiency of AI-based prediction models in health care.
Collapse
Affiliation(s)
- Lotta M Meijerink
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Zoë S Dunias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Artuur M Leeuwenberg
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne A H de Hond
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - David A Jenkins
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Glen P Martin
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Matthew Sperrin
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Niels Peek
- Department of Public Health and Primary Care, The Healthcare Improvement Studies Institute, University of Cambridge, Cambridge, United Kingdom
| | - René Spijker
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lotty Hooft
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karel G M Moons
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maarten van Smeden
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ewoud Schuit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Yu Z, Zheng X, Sun J, Zhang P, Zhong Y, Lv X, Yuan H, Liang F, Wang D, Yang J. Critical factors influencing live birth rates in fresh embryo transfer for IVF: insights from cluster ensemble algorithms. Sci Rep 2025; 15:3734. [PMID: 39881210 PMCID: PMC11779932 DOI: 10.1038/s41598-025-88210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Infertility has emerged as a significant global health concern. Assisted reproductive technology (ART) assists numerous infertile couples in conceiving, yet some experience repeated, unsuccessful cycles. This study aims to identify the pivotal clinical factors influencing the success of fresh embryo transfer of in vitro fertilization (IVF). We introduce a novel Non-negative Matrix Factorization (NMF)-based Ensemble algorithm (NMFE). By combining feature matrices from NMF, accelerated multiplicative updates for non-negative matrix factorization (AMU-NMF), and the generalized deep learning clustering (GDLC) algorithm. NMFE exhibits superior accuracy and reliability in analyzing the in vitro fertilization and embryo transfer (IVF-ET) dataset. The dataset comprises 2238 cycles and 85 independent clinical features, categorized into 13 categories based on feature correlation. Subsequently, the NMFE model was trained and reached convergence. Then the features of 13 categories were sequentially masked to analyze their individual effects on IVF-ET live births. The NMFE analysis highlights the significant influence of therapeutic interventions, Embryo transfer outcomes, and ovarian response assessment on live births of IVF-ET. Therapeutic interventions, including ovarian stimulation protocols, ovulation stimulation drugs, and pre-and intra-stimulation cycle acupuncture play prominent roles. However, their impacts on the IVF-ET model are reduced, suggesting a potential synergistic effect when combined. Conversely, factors like basic information, diagnosis, and obstetric history have a lesser influence. The NMFE algorithm demonstrates promising potential in assessing the influence of clinical features on live births in IVF fresh embryo transfer.
Collapse
Affiliation(s)
- Zheng Yu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaoyan Zheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Traditional Chinese Medicine Department, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, 610066, China
| | - Jiaqi Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Pengfei Zhang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ying Zhong
- Traditional Chinese Medicine Department, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, 610066, China
| | - Xingyu Lv
- Traditional Chinese Medicine Department, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, 610066, China
| | - Hongwen Yuan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Dexian Wang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Jie Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Traditional Chinese Medicine Department, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, 610066, China
| |
Collapse
|
3
|
Marinaro J, Goldstein M. Current and Future Applications of Artificial Intelligence to Diagnose and Treat Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:1-23. [PMID: 40301250 DOI: 10.1007/978-3-031-82990-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Artificial intelligence (AI) models are being increasingly applied to modern medicine. Within the field of urology, reproductive urology specifically offers many opportunities to utilize this advanced computational technology for diagnostic and therapeutic benefit. While the use of AI models in diagnosing and treating male infertility remains in its early days, current and future applications of these models include automation of semen analysis testing; predicting semen quality; identifying subsets of infertile men most likely to benefit from surgical treatment (i.e., varicocelectomy, surgical sperm retrieval); identifying rare sperm from testis tissue; and selecting optimal sperm for in vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI). In this chapter, we review the current literature surrounding these applications and discuss opportunities for future research.
Collapse
Affiliation(s)
- Jessica Marinaro
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
- Center for Male Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Marc Goldstein
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Center for Male Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Bulletti C, Franasiak JM, Busnelli A, Sciorio R, Berrettini M, Aghajanova L, Bulletti FM, Ata B. Artificial Intelligence, Clinical Decision Support Algorithms, Mathematical Models, Calculators Applications in Infertility: Systematic Review and Hands-On Digital Applications. MAYO CLINIC PROCEEDINGS. DIGITAL HEALTH 2024; 2:518-532. [PMID: 40206524 PMCID: PMC11975849 DOI: 10.1016/j.mcpdig.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The aim of this systematic review was to identify clinical decision support algorithms (CDSAs) proposed for assisted reproductive technologies (ARTs) and to evaluate their effectiveness in improving ART cycles at every stage vs traditional methods, thereby providing an evidence-based guidance for their use in ART practice. A literature search on PubMed and Embase of articles published between 1 January 2013 and 31 January 2024 was performed to identify relevant articles. Prospective and retrospective studies in English on the use of CDSA for ART were included. Out of 1746 articles screened, 116 met the inclusion criteria. The selected articles were categorized into 3 areas: prognosis and patient counseling, clinical management, and embryo assessment. After screening, 11 CDSAs were identified as potentially valuable for clinical management and laboratory practices. Our findings highlight the potential of automated decision aids to improve in vitro fertilization outcomes. However, the main limitation of this review was the lack of standardization in validation methods across studies. Further validation and clinical trials are needed to establish the effectiveness of these tools in the clinical setting.
Collapse
Affiliation(s)
- Carlo Bulletti
- Help Me Doctor, Assisted Reproductive Technology, Gynecological Endocrinology and Reproductive Surgery, Cattolica, Italy
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale University, New Haven, CT
| | | | - Andrea Busnelli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman Mother Child, Lausanne University Hospital, CHUV, Lausanne, Switzerland
| | - Marco Berrettini
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Lusine Aghajanova
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Sunnyvale, CA
| | - Francesco M. Bulletti
- Department Obstetrics and Gynecology, University Hospital of Vaud, Lausanne, Switzerland
| | - Baris Ata
- ART Fertility Clinics, Dubai, United Arab Emirates
- Department of Obstetrics and Gynecology, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
5
|
Hew Y, Kutuk D, Duzcu T, Ergun Y, Basar M. Artificial Intelligence in IVF Laboratories: Elevating Outcomes Through Precision and Efficiency. BIOLOGY 2024; 13:988. [PMID: 39765654 PMCID: PMC11727220 DOI: 10.3390/biology13120988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 01/15/2025]
Abstract
Incorporating artificial intelligence (AI) into in vitro fertilization (IVF) laboratories signifies a significant advancement in reproductive medicine. AI technologies, such as neural networks, deep learning, and machine learning, promise to enhance quality control (QC) and quality assurance (QA) through increased accuracy, consistency, and operational efficiency. This comprehensive review examines the effects of AI on IVF laboratories, focusing on its role in automating processes such as embryo and sperm selection, optimizing clinical outcomes, and reducing human error. AI's data analysis and pattern recognition capabilities offer valuable predictive insights, enhancing personalized treatment plans and increasing success rates in fertility treatments. However, integrating AI also brings ethical, regulatory, and societal challenges, including concerns about data security, algorithmic bias, and the human-machine interface in clinical decision-making. Through an in-depth examination of current case studies, advancements, and future directions, this manuscript highlights how AI can revolutionize IVF by standardizing processes, improving patient outcomes, and advancing the precision of reproductive medicine. It underscores the necessity of ongoing research and ethical oversight to ensure fair and transparent applications in this sensitive field, assuring the responsible use of AI in reproductive medicine.
Collapse
Affiliation(s)
- Yaling Hew
- Valley Health Fertility Center, Paramus, NJ 07652, USA;
| | - Duygu Kutuk
- Bahceci Health Group, Umut IVF Center, Altunizade, Istanbul 34394, Turkey;
| | - Tuba Duzcu
- Department of Health Management, School of Health Sciences, Istanbul Medipol University, Istanbul 34815, Turkey;
| | - Yagmur Ergun
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Marlton, NJ 07920, USA;
| | - Murat Basar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Fertility Center, Orange, CT 06477, USA
| |
Collapse
|
6
|
García-Vázquez FA. Artificial intelligence and porcine breeding. Anim Reprod Sci 2024; 269:107538. [PMID: 38926001 DOI: 10.1016/j.anireprosci.2024.107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Livestock management is evolving into a new era, characterized by the analysis of vast quantities of data (Big Data) collected from both traditional breeding methods and new technologies such as sensors, automated monitoring system, and advanced analytics. Artificial intelligence (A-In), which refers to the capability of machines to mimic human intelligence, including subfields like machine learning and deep learning, is playing a pivotal role in this transformation. A wide array of A-In techniques, successfully employed in various industrial and scientific contexts, are now being integrated into mainstream livestock management practices. In the case of swine breeding, while traditional methods have yielded considerable success, the increasing amount of information requires the adoption of new technologies such as A-In to drive productivity, enhance animal welfare, and reduce environmental impact. Current findings suggest that these techniques have the potential to match or exceed the performance of traditional methods, often being more scalable in terms of efficiency and sustainability within the breeding industry. This review provides insights into the application of A-In in porcine breeding, from the perspectives of both sows (including welfare and reproductive management) and boars (including semen quality and health), and explores new approaches which are already being applied in other species.
Collapse
Affiliation(s)
- Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia 30100, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
7
|
Mikkola M, Desmet KLJ, Kommisrud E, Riegler MA. Recent advancements to increase success in assisted reproductive technologies in cattle. Anim Reprod 2024; 21:e20240031. [PMID: 39176005 PMCID: PMC11340803 DOI: 10.1590/1984-3143-ar2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/14/2024] [Indexed: 08/24/2024] Open
Abstract
Assisted reproductive technologies (ART) are fundamental for cattle breeding and sustainable food production. Together with genomic selection, these technologies contribute to reducing the generation interval and accelerating genetic progress. In this paper, we discuss advancements in technologies used in the fertility evaluation of breeding animals, and the collection, processing, and preservation of the gametes. It is of utmost importance for the breeding industry to select dams and sires of the next generation as young as possible, as is the efficient and timely collection of gametes. There is a need for reliable and easily applicable methods to evaluate sexual maturity and fertility. Although gametes processing and preservation have been improved in recent decades, challenges are still encountered. The targeted use of sexed semen and beef semen has obliterated the production of surplus replacement heifers and bull calves from dairy breeds, markedly improving animal welfare and ethical considerations in production practices. Parallel with new technologies, many well-established technologies remain relevant, although with evolving applications. In vitro production (IVP) has become the predominant method of embryo production. Although fundamental improvements in IVP procedures have been established, the quality of IVP embryos remains inferior to their in vivo counterparts. Improvements to facilitate oocyte maturation and development of new culture systems, e.g. microfluidics, are presented in this paper. New non-invasive and objective tools are needed to select embryos for transfer. Cryopreservation of semen and embryos plays a pivotal role in the distribution of genetics, and we discuss the challenges and opportunities in this field. Finally, machine learning (ML) is gaining ground in agriculture and ART. This paper delves into the utilization of emerging technologies in ART, along with the current status, key challenges, and future prospects of ML in both research and practical applications within ART.
Collapse
Affiliation(s)
| | | | - Elisabeth Kommisrud
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Michael A. Riegler
- Holistic Systems Department, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
| |
Collapse
|
8
|
Gül M, Russo GI, Kandil H, Boitrelle F, Saleh R, Chung E, Kavoussi P, Mostafa T, Shah R, Agarwal A. Male Infertility: New Developments, Current Challenges, and Future Directions. World J Mens Health 2024; 42:502-517. [PMID: 38164030 PMCID: PMC11216957 DOI: 10.5534/wjmh.230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 01/03/2024] Open
Abstract
There have been many significant scientific advances in the diagnostics and treatment modalities in the field of male infertility in recent decades. Examples of these include assisted reproductive technologies, sperm selection techniques for intracytoplasmic sperm injection, surgical procedures for sperm retrieval, and novel tests of sperm function. However, there is certainly a need for new developments in this field. In this review, we discuss advances in the management of male infertility, such as seminal oxidative stress testing, sperm DNA fragmentation testing, genetic and epigenetic tests, genetic manipulations, artificial intelligence, personalized medicine, and telemedicine. The role of the reproductive urologist will continue to expand in future years to address different topzics related to diverse questions and controversies of pathophysiology, diagnosis, and therapy of male infertility, training researchers and physicians in medical and scientific research in reproductive urology/andrology, and further development of andrology as an independent specialty.
Collapse
Affiliation(s)
- Murat Gül
- Department of Urology, Selcuk University School of Medicine, Konya, Turkey
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Giorgio Ivan Russo
- Urology Section, University of Catania, Catania, Italy
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Hussein Kandil
- Fakih IVF Fertility Center, Abu Dhabi, UAE
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Parviz Kavoussi
- Department of Reproductive Urology, Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Taymour Mostafa
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
- Well Women's Centre, Sir HN Reliance Foundation Hospital, Mumbai, India
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA
- Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
9
|
Zhang C, Zhang Y, Chang Z, Li C. Sperm YOLOv8E-TrackEVD: A Novel Approach for Sperm Detection and Tracking. SENSORS (BASEL, SWITZERLAND) 2024; 24:3493. [PMID: 38894284 PMCID: PMC11175353 DOI: 10.3390/s24113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Male infertility is a global health issue, with 40-50% attributed to sperm abnormalities. The subjectivity and irreproducibility of existing detection methods pose challenges to sperm assessment, making the design of automated semen analysis algorithms crucial for enhancing the reliability of sperm evaluations. This paper proposes a comprehensive sperm tracking algorithm (Sperm YOLOv8E-TrackEVD) that combines an enhanced YOLOv8 small object detection algorithm (SpermYOLOv8-E) with an improved DeepOCSORT tracking algorithm (SpermTrack-EVD) to detect human sperm in a microscopic field of view and track healthy sperm in a sample in a short period effectively. Firstly, we trained the improved YOLOv8 model on the VISEM-Tracking dataset for accurate sperm detection. To enhance the detection of small sperm objects, we introduced an attention mechanism, added a small object detection layer, and integrated the SPDConv and Detect_DyHead modules. Furthermore, we used a new distance metric method and chose IoU loss calculation. Ultimately, we achieved a 1.3% increase in precision, a 1.4% increase in recall rate, and a 2.0% improvement in mAP@0.5:0.95. We applied SpermYOLOv8-E combined with SpermTrack-EVD for sperm tracking. On the VISEM-Tracking dataset, we achieved 74.303% HOTA and 71.167% MOTA. These results show the effectiveness of the designed Sperm YOLOv8E-TrackEVD approach in sperm tracking scenarios.
Collapse
Affiliation(s)
| | | | - Zhanyuan Chang
- College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China; (C.Z.); (Y.Z.); (C.L.)
| | | |
Collapse
|
10
|
Schmeis Arroyo V, Iosa M, Antonucci G, De Bartolo D. Predicting Male Infertility Using Artificial Neural Networks: A Review of the Literature. Healthcare (Basel) 2024; 12:781. [PMID: 38610202 PMCID: PMC11011284 DOI: 10.3390/healthcare12070781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Male infertility is a relevant public health problem, but there is no systematic review of the different machine learning (ML) models and their accuracy so far. The present review aims to comprehensively investigate the use of ML algorithms in predicting male infertility, thus reporting the accuracy of the used models in the prediction of male infertility as a primary outcome. Particular attention will be paid to the use of artificial neural networks (ANNs). A comprehensive literature search was conducted in PubMed, Scopus, and Science Direct between 15 July and 23 October 2023, conducted under the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We performed a quality assessment of the included studies using the recommended tools suggested for the type of study design adopted. We also made a screening of the Risk of Bias (RoB) associated with the included studies. Thus, 43 relevant publications were included in this review, for a total of 40 different ML models detected. The studies included reported a good quality, even if RoB was not always good for all the types of studies. The included studies reported a median accuracy of 88% in predicting male infertility using ML models. We found only seven studies using ANN models for male infertility prediction, reporting a median accuracy of 84%.
Collapse
Affiliation(s)
- Vivian Schmeis Arroyo
- Department of Psychology, University Sapienza of Rome, 00185 Rome, Italy (M.I.); (G.A.)
| | - Marco Iosa
- Department of Psychology, University Sapienza of Rome, 00185 Rome, Italy (M.I.); (G.A.)
- Santa Lucia Foundation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS), 00179 Rome, Italy
| | - Gabriella Antonucci
- Department of Psychology, University Sapienza of Rome, 00185 Rome, Italy (M.I.); (G.A.)
- Santa Lucia Foundation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS), 00179 Rome, Italy
| | - Daniela De Bartolo
- Santa Lucia Foundation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS), 00179 Rome, Italy
| |
Collapse
|
11
|
Hanassab S, Abbara A, Yeung AC, Voliotis M, Tsaneva-Atanasova K, Kelsey TW, Trew GH, Nelson SM, Heinis T, Dhillo WS. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit Med 2024; 7:55. [PMID: 38429464 PMCID: PMC10907618 DOI: 10.1038/s41746-024-01006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/10/2024] [Indexed: 03/03/2024] Open
Abstract
Infertility affects 1-in-6 couples, with repeated intensive cycles of assisted reproductive technology (ART) required by many to achieve a desired live birth. In ART, typically, clinicians and laboratory staff consider patient characteristics, previous treatment responses, and ongoing monitoring to determine treatment decisions. However, the reproducibility, weighting, and interpretation of these characteristics are contentious, and highly operator-dependent, resulting in considerable reliance on clinical experience. Artificial intelligence (AI) is ideally suited to handle, process, and analyze large, dynamic, temporal datasets with multiple intermediary outcomes that are generated during an ART cycle. Here, we review how AI has demonstrated potential for optimization and personalization of key steps in a reproducible manner, including: drug selection and dosing, cycle monitoring, induction of oocyte maturation, and selection of the most competent gametes and embryos, to improve the overall efficacy and safety of ART.
Collapse
Affiliation(s)
- Simon Hanassab
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- Department of Computing, Imperial College London, London, UK
- UKRI Centre for Doctoral Training in AI for Healthcare, Imperial College London, London, UK
| | - Ali Abbara
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Arthur C Yeung
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Margaritis Voliotis
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Tom W Kelsey
- School of Computer Science, University of St Andrews, St Andrews, UK
| | - Geoffrey H Trew
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- The Fertility Partnership, Oxford, UK
| | - Scott M Nelson
- The Fertility Partnership, Oxford, UK
- School of Medicine, University of Glasgow, Glasgow, UK
- Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Thomas Heinis
- Department of Computing, Imperial College London, London, UK
| | - Waljit S Dhillo
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK.
- Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
12
|
Panner Selvam MK, Moharana AK, Baskaran S, Finelli R, Hudnall MC, Sikka SC. Current Updates on Involvement of Artificial Intelligence and Machine Learning in Semen Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:279. [PMID: 38399566 PMCID: PMC10890589 DOI: 10.3390/medicina60020279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Infertility rates and the number of couples undergoing reproductive care have both increased substantially during the last few decades. Semen analysis is a crucial step in both the diagnosis and the treatment of male infertility. The accuracy of semen analysis results remains quite poor despite years of practice and advancements. Artificial intelligence (AI) algorithms, which can analyze and synthesize large amounts of data, can address the unique challenges involved in semen analysis due to the high objectivity of current methodologies. This review addresses recent AI advancements in semen analysis. Materials and Methods: A systematic literature search was performed in the PubMed database. Non-English articles and studies not related to humans were excluded. We extracted data related to AI algorithms or models used to evaluate semen parameters from the original studies, excluding abstracts, case reports, and meeting reports. Results: Of the 306 articles identified, 225 articles were rejected in the preliminary screening. The evaluation of the full texts of the remaining 81 publications resulted in the exclusion of another 48 articles, with a final inclusion of 33 original articles in this review. Conclusions: AI and machine learning are becoming increasingly popular in biomedical applications. The examination and selection of sperm by andrologists and embryologists may benefit greatly from using these algorithms. Furthermore, when bigger and more reliable datasets become accessible for training, these algorithms may improve over time.
Collapse
Affiliation(s)
- Manesh Kumar Panner Selvam
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
| | - Ajaya Kumar Moharana
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack 753003, Odisha, India
| | - Saradha Baskaran
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
| | | | | | - Suresh C. Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
| |
Collapse
|
13
|
Kobayashi H. Potential for artificial intelligence in medicine and its application to male infertility. Reprod Med Biol 2024; 23:e12590. [PMID: 38948339 PMCID: PMC11211808 DOI: 10.1002/rmb2.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background The third AI boom, which began in 2010, has been characterized by the rapid evolution and diversification of AI and marked by the development of key technologies such as machine learning and deep learning. AI is revolutionizing the medical field, enhancing diagnostic accuracy, surgical outcomes, and drug production. Methods This review includes explanations of digital transformation (DX), the history of AI, the difference between machine learning and deep learning, recent AI topics, medical AI, and AI research in male infertility. Main Findings Results In research on male infertility, I established an AI-based prediction model for Johnsen scores and an AI predictive model for sperm retrieval in non-obstructive azoospermia, both by no-code AI. Conclusions AI is making constant progress. It would be ideal for physicians to acquire a knowledge of AI and even create AI models. No-code AI tools have revolutionized model creation, allowing individuals to independently handle data preparation and model development. Previously a team effort, this shift empowers users to craft customized AI models solo, offering greater flexibility and control in the model creation process.
Collapse
|
14
|
Si K, Huang B, Jin L. Application of artificial intelligence in gametes and embryos selection. HUM FERTIL 2023; 26:757-777. [PMID: 37705466 DOI: 10.1080/14647273.2023.2256980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/22/2023] [Indexed: 09/15/2023]
Abstract
Gamete and embryo quality are critical to the success rate of Assisted Reproductive Technology (ART) cycles, but there remains a lack of methods to accurately measure the quality of sperm, oocytes and embryos. The ability of Artificial Intelligence (AI) technology to analyze large amounts of data, especially video and images, is particularly useful in gamete and embryo assessment and selection. The well-trained model has fast calculation speed and high accuracy, which can help embryologists to perform more objective gamete and embryo selection. Various artificial intelligence models have been developed for gamete and embryo assessment, some of which exhibit good performance. In this review, we summarize the latest applications of AI technology in semen analysis, as well as selection for sperm, oocyte and embryo, and discuss the existing problems and development directions of artificial intelligence in this field.
Collapse
Affiliation(s)
- Keyi Si
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bo Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
15
|
Haugen TB, Witczak O, Hicks SA, Björndahl L, Andersen JM, Riegler MA. Sperm motility assessed by deep convolutional neural networks into WHO categories. Sci Rep 2023; 13:14777. [PMID: 37679484 PMCID: PMC10484948 DOI: 10.1038/s41598-023-41871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
Semen analysis is central in infertility investigation. Manual assessment of sperm motility according to the WHO recommendations is the golden standard, and extensive training is a requirement for accurate and reproducible results. Deep convolutional neural networks (DCNN) are especially suitable for image classification. In this study, we evaluated the performance of the DCNN ResNet-50 in predicting the proportion of sperm in the WHO motility categories. Two models were evaluated using tenfold cross-validation with 65 video recordings of wet semen preparations from an external quality assessment programme for semen analysis. The corresponding manually assessed data was obtained from several of the reference laboratories, and the mean values were used for training of the DCNN models. One model was trained to predict the three categories progressive motility, non-progressive motility, and immotile spermatozoa. Another model was used in predicting four categories, where progressive motility was differentiated into rapid and slow. The resulting average mean absolute error (MAE) was 0.05 and 0.07, and the average ZeroR baseline was 0.09 and 0.10 for the three-category and the four-category model, respectively. Manual and DCNN-predicted motility was compared by Pearson's correlation coefficient and by difference plots. The strongest correlation between the mean manually assessed values and DCNN-predicted motility was observed for % progressively motile spermatozoa (Pearson's r = 0.88, p < 0.001) and % immotile spermatozoa (r = 0.89, p < 0.001). For rapid progressive motility, the correlation was moderate (Pearson's r = 0.673, p < 0.001). The median difference between manual and predicted progressive motility was 0 and 2 for immotile spermatozoa. The largest bias was observed at high and low percentages of progressive and immotile spermatozoa. The DCNN-predicted value was within the range of the interlaboratory variation of the results for most of the samples. In conclusion, DCNN models were able to predict the proportion of spermatozoa into the WHO motility categories with significantly lower error than the baseline. The best correlation between the manual and the DCNN-predicted motility values was found for the categories progressive and immotile. Of note, there was considerable variation between the mean motility values obtained for each category by the reference laboratories, especially for rapid progressive motility, which impacts the training of the DCNN models.
Collapse
Affiliation(s)
- Trine B Haugen
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| | - Oliwia Witczak
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Steven A Hicks
- Simula Metropolitan Center for Digital Engineering, Oslo, Norway
| | - Lars Björndahl
- ANOVA, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Jorunn M Andersen
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | | |
Collapse
|
16
|
Jiang J, Li J, Li J, Pei H, Li M, Zou Q, Lv Z. A Machine Learning Method to Identify Umami Peptide Sequences by Using Multiplicative LSTM Embedded Features. Foods 2023; 12:foods12071498. [PMID: 37048319 PMCID: PMC10094688 DOI: 10.3390/foods12071498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Umami peptides enhance the umami taste of food and have good food processing properties, nutritional value, and numerous potential applications. Wet testing for the identification of umami peptides is a time-consuming and expensive process. Here, we report the iUmami-DRLF that uses a logistic regression (LR) method solely based on the deep learning pre-trained neural network feature extraction method, unified representation (UniRep based on multiplicative LSTM), for feature extraction from the peptide sequences. The findings demonstrate that deep learning representation learning significantly enhanced the capability of models in identifying umami peptides and predictive precision solely based on peptide sequence information. The newly validated taste sequences were also used to test the iUmami-DRLF and other predictors, and the result indicates that the iUmami-DRLF has better robustness and accuracy and remains valid at higher probability thresholds. The iUmami-DRLF method can aid further studies on enhancing the umami flavor of food for satisfying the need for an umami-flavored diet.
Collapse
Affiliation(s)
- Jici Jiang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiayu Li
- College of Life Science, Sichuan University, Chengdu 610065, China
| | - Junxian Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongdi Pei
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Wu Yuzhang Honors College, Sichuan University, Chengdu 610065, China
| | - Mingxin Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Zhibin Lv
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Zhu R, Cui Y, Huang J, Hou E, Zhao J, Zhou Z, Li H. YOLOv5s-SA: Light-Weighted and Improved YOLOv5s for Sperm Detection. Diagnostics (Basel) 2023; 13:diagnostics13061100. [PMID: 36980408 PMCID: PMC10047898 DOI: 10.3390/diagnostics13061100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Sperm detection performance is particularly critical for sperm motility tracking. However, there are a large number of non-sperm objects, sperm occlusion and poorly detailed texture features in semen images, which directly affect the accuracy of sperm detection. To solve the problem of false detection and missed detection in sperm detection, a multi-sperm target detection model, Yolov5s-SA, with an SA attention mechanism is proposed based on the YOLOv5s algorithm. Firstly, a depthwise, separable convolution structure is used to replace the partial convolution of the backbone network, which can ensure stable precision and reduce the number of model parameters. Secondly, a new multi-scale feature fusion module is designed to enhance the perception of feature information to supplement the positional information and high-resolution of the deep feature map. Finally, the SA attention mechanism is integrated into the neck network before the output of the feature map to enhance the correlation between the feature map channels and improve the fine-grained feature fusion ability of YOLOv5s. Experimental results show that compared with various YOLO algorithms, the proposed algorithm improves the detection accuracy and speed to a certain extent. Compared with the YOLOv3, YOLOv3-spp, YOLOv5s and YOLOv5m models, the average accuracy increases by 18.1%, 15.2%, 6.9% and 1.9%, respectively. It can effectively reduce the missed detection of occluded sperm and achieve lightweight and efficient multi-sperm target detection.
Collapse
Affiliation(s)
- Ronghua Zhu
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yansong Cui
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
- Correspondence:
| | - Jianming Huang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Enyu Hou
- SAS Medical Technology (Beijing) Co., Ltd., Changping District, Beijing 102200, China
| | - Jiayu Zhao
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Zhilin Zhou
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Hao Li
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
18
|
Zhao Y, Wang X, Che T, Bao G, Li S. Multi-task deep learning for medical image computing and analysis: A review. Comput Biol Med 2023; 153:106496. [PMID: 36634599 DOI: 10.1016/j.compbiomed.2022.106496] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The renaissance of deep learning has provided promising solutions to various tasks. While conventional deep learning models are constructed for a single specific task, multi-task deep learning (MTDL) that is capable to simultaneously accomplish at least two tasks has attracted research attention. MTDL is a joint learning paradigm that harnesses the inherent correlation of multiple related tasks to achieve reciprocal benefits in improving performance, enhancing generalizability, and reducing the overall computational cost. This review focuses on the advanced applications of MTDL for medical image computing and analysis. We first summarize four popular MTDL network architectures (i.e., cascaded, parallel, interacted, and hybrid). Then, we review the representative MTDL-based networks for eight application areas, including the brain, eye, chest, cardiac, abdomen, musculoskeletal, pathology, and other human body regions. While MTDL-based medical image processing has been flourishing and demonstrating outstanding performance in many tasks, in the meanwhile, there are performance gaps in some tasks, and accordingly we perceive the open challenges and the perspective trends. For instance, in the 2018 Ischemic Stroke Lesion Segmentation challenge, the reported top dice score of 0.51 and top recall of 0.55 achieved by the cascaded MTDL model indicate further research efforts in high demand to escalate the performance of current models.
Collapse
Affiliation(s)
- Yan Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiuying Wang
- School of Computer Science, The University of Sydney, Sydney, NSW, 2008, Australia.
| | - Tongtong Che
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Guoqing Bao
- School of Computer Science, The University of Sydney, Sydney, NSW, 2008, Australia
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
19
|
Fang B, Wang C, Sun F, Chen Z, Shan J, Liu H, Ding W, Liang W. Simultaneous sEMG Recognition of Gestures and Force Levels for Interaction With Prosthetic Hand. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2426-2436. [PMID: 35981072 DOI: 10.1109/tnsre.2022.3199809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The natural interaction between the prosthetic hand and the upper limb amputation patient is important and directly affects the rehabilitation effect and operation ability. Most previous studies only focused on the interaction of gestures but ignored the force levels. This paper proposes a simultaneous recognition method of gestures and forces for interaction with a prosthetic hand. The multitask classification algorithm based on a convolutional neural network (CNN) is designed to improve recognition efficiency and ensure recognition accuracy. The offline experimental results show that the algorithm proposed in this study outperforms other methods in both training speed and accuracy. To prove the effectiveness of the proposed method, a myoelectric prosthetic hand integrated with tactile sensors is developed, and surface electromyography (sEMG) datasets of healthy persons and amputees are built. The online experimental results show that the amputee can control the prosthetic hand to continuously make gestures under different force levels, and the effect of hand coordination on the hand perception of amputees is explored. The results show that gesture classification operation tasks with different force levels based on sEMG signals can be accurately recognized and comfortably interact with prosthetic hands in real time. It improves the amputees' operation ability and relieves their muscle fatigue.
Collapse
|
20
|
Sato T, Kishi H, Murakata S, Hayashi Y, Hattori T, Nakazawa S, Mori Y, Hidaka M, Kasahara Y, Kusuhara A, Hosoya K, Hayashi H, Okamoto A. A new deep-learning model using YOLOv3 to support sperm selection during intracytoplasmic sperm injection procedure. Reprod Med Biol 2022; 21:e12454. [PMID: 35414764 PMCID: PMC8979154 DOI: 10.1002/rmb2.12454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose To create and evaluate a machine-learning model for YOLOv3 that can simultaneously perform morphological evaluation and tracking in a short time, which can be adapted to video data under an inverted microscope. Methods Japanese patients who underwent intracytoplasmic sperm injection at the Jikei University School of Medicine and Keiai Reproductive and Endosurgical Clinic from January 2019 to March 2020 were included. An AI model that simultaneously performs morphological assessment and tracking was created and its performance was evaluated. Results For morphological assessment, the sensitivity and positive predictive value (PPV) of this model for abnormal sperm were 0.881 and 0.853, respectively. The sensitivity and PPV for normal sperm were 0.794 and 0.689, respectively. For tracking performance, among the 51 objects, 40 (78.4%) were mostly tracked, 11 (21.6%) were partially tracked, and 0 (0%) were mostly lost. Conclusions This study showed that evaluating sperm morphology while tracking in a single model is possible by training YOLO v3. This model could acquire time-series data of one sperm, which will assist in acquiring and annotating sperm image data.
Collapse
Affiliation(s)
- Takuma Sato
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| | - Hiroshi Kishi
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| | - Saori Murakata
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| | - Yuki Hayashi
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| | | | | | - Yusuke Mori
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| | - Miwa Hidaka
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| | - Yuta Kasahara
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| | - Atsuko Kusuhara
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| | - Kayo Hosoya
- Keiai Reproductive and Endosurgical ClinicSaitamaJapan
| | | | - Aikou Okamoto
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| |
Collapse
|
21
|
Chen A, Li C, Zou S, Rahaman MM, Yao Y, Chen H, Yang H, Zhao P, Hu W, Liu W, Grzegorzek M. SVIA dataset: A new dataset of microscopic videos and images for computer-aided sperm analysis. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2021.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Riegler MA, Stensen MH, Witczak O, Andersen JM, Hicks SA, Hammer HL, Delbarre E, Halvorsen P, Yazidi A, Holst N, Haugen TB. Artificial intelligence in the fertility clinic: status, pitfalls and possibilities. Hum Reprod 2021; 36:2429-2442. [PMID: 34324672 DOI: 10.1093/humrep/deab168] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, the amount of data produced in the field of ART has increased exponentially. The diversity of data is large, ranging from videos to tabular data. At the same time, artificial intelligence (AI) is progressively used in medical practice and may become a promising tool to improve success rates with ART. AI models may compensate for the lack of objectivity in several critical procedures in fertility clinics, especially embryo and sperm assessments. Various models have been developed, and even though several of them show promising performance, there are still many challenges to overcome. In this review, we present recent research on AI in the context of ART. We discuss the strengths and weaknesses of the presented methods, especially regarding clinical relevance. We also address the pitfalls hampering successful use of AI in the clinic and discuss future possibilities and important aspects to make AI truly useful for ART.
Collapse
Affiliation(s)
- M A Riegler
- Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
| | | | - O Witczak
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - J M Andersen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - S A Hicks
- Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Oslo, Norway.,Department of Computer Science, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - H L Hammer
- Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Oslo, Norway.,Department of Computer Science, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - E Delbarre
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - P Halvorsen
- Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Oslo, Norway.,Department of Computer Science, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - A Yazidi
- Department of Computer Science, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - N Holst
- Fertilitetssenteret, Oslo, Norway
| | - T B Haugen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|