1
|
Vieira C, Rocha L, Guimarães M, Dias D. Exploring transparency: A comparative analysis of explainable artificial intelligence techniques in retinography images to support the diagnosis of glaucoma. Comput Biol Med 2025; 185:109556. [PMID: 39700858 DOI: 10.1016/j.compbiomed.2024.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Machine learning models are widely applied across diverse fields, including nearly all segments of human activity. In healthcare, artificial intelligence techniques have revolutionized disease diagnosis, particularly in image classification. Although these models have achieved significant results, their lack of explainability has limited widespread adoption in clinical practice. In medical environments, understanding AI model decisions is essential not only for healthcare professionals' trust but also for regulatory compliance, patient safety, and accountability in case of failures. Glaucoma, a neurodegenerative eye disease, can lead to irreversible blindness, making early detection crucial for preventing vision loss. Automated glaucoma detection has been a focus of intensive research in computer vision, with numerous studies proposing the use of convolutional neural networks (CNNs) to analyze retinal fundus images and diagnose the disease automatically. However, these models often lack the necessary explainability, which is essential for ophthalmologists to understand and justify their decisions to patients. This paper explores and applies explainable artificial intelligence (XAI) techniques to different CNN architectures for glaucoma classification, comparing which explanation technique offers the best interpretive resources for clinical diagnosis. We propose a new approach, SCIM (SHAP-CAM Interpretable Mapping), which has shown promising results. The experiments were conducted with an ophthalmology specialist who highlighted that CAM-based interpretability, applied to the VGG16 and VGG19 architectures, stands out as the most effective resource for promoting interpretability and supporting diagnosis.
Collapse
Affiliation(s)
- Cleverson Vieira
- Computer Science Department/Federal University of São João del-Rei - UFSJ, São João del- Rei, MG, Brazil.
| | - Leonardo Rocha
- Computer Science Department/Federal University of São João del-Rei - UFSJ, São João del- Rei, MG, Brazil.
| | | | - Diego Dias
- Statistics Department/Federal University of Espírito Santo - UFES, Vitória, ES, Brazil.
| |
Collapse
|
2
|
Christopher M, Hallaj S, Jiravarnsirikul A, Baxter SL, Zangwill LM. Novel Technologies in Artificial Intelligence and Telemedicine for Glaucoma Screening. J Glaucoma 2024; 33:S26-S32. [PMID: 38506792 DOI: 10.1097/ijg.0000000000002367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE To provide an overview of novel technologies in telemedicine and artificial intelligence (AI) approaches for cost-effective glaucoma screening. METHODS/RESULTS A narrative review was performed by summarizing research results, recent developments in glaucoma detection and care, and considerations related to telemedicine and AI in glaucoma screening. Telemedicine and AI approaches provide the opportunity for novel glaucoma screening programs in primary care, optometry, portable, and home-based settings. These approaches offer several advantages for glaucoma screening, including increasing access to care, lowering costs, identifying patients in need of urgent treatment, and enabling timely diagnosis and early intervention. However, challenges remain in implementing these systems, including integration into existing clinical workflows, ensuring equity for patients, and meeting ethical and regulatory requirements. Leveraging recent work towards standardized data acquisition as well as tools and techniques developed for automated diabetic retinopathy screening programs may provide a model for a cost-effective approach to glaucoma screening. CONCLUSION Leveraging novel technologies and advances in telemedicine and AI-based approaches to glaucoma detection show promise for improving our ability to detect moderate and advanced glaucoma in primary care settings and target higher individuals at high risk for having the disease.
Collapse
Affiliation(s)
- Mark Christopher
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center
- Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute
| | - Shahin Hallaj
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center
- Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute
| | - Anuwat Jiravarnsirikul
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center
- Department of Medicine, Division of Biomedical Informatics, University of California San Diego, La Jolla, CA
| | - Sally L Baxter
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center
- Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute
- Department of Medicine, Division of Biomedical Informatics, University of California San Diego, La Jolla, CA
| | - Linda M Zangwill
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center
- Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute
| |
Collapse
|
3
|
Bragança CP, Torres JM, Macedo LO, Soares CPDA. Advancements in Glaucoma Diagnosis: The Role of AI in Medical Imaging. Diagnostics (Basel) 2024; 14:530. [PMID: 38473002 DOI: 10.3390/diagnostics14050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The progress of artificial intelligence algorithms in digital image processing and automatic diagnosis studies of the eye disease glaucoma has been growing and presenting essential advances to guarantee better clinical care for the population. Given the context, this article describes the main types of glaucoma, traditional forms of diagnosis, and presents the global epidemiology of the disease. Furthermore, it explores how studies using artificial intelligence algorithms have been investigated as possible tools to aid in the early diagnosis of this pathology through population screening. Therefore, the related work section presents the main studies and methodologies used in the automatic classification of glaucoma from digital fundus images and artificial intelligence algorithms, as well as the main databases containing images labeled for glaucoma and publicly available for the training of machine learning algorithms.
Collapse
Affiliation(s)
- Clerimar Paulo Bragança
- ISUS Unit, Faculty of Science and Technology, University Fernando Pessoa, 4249-004 Porto, Portugal
- Department of Ophthalmology, Eye Hospital of Southern Minas Gerais State, Rua Joaquim Rosa 14, Itanhandu 37464-000, MG, Brazil
| | - José Manuel Torres
- ISUS Unit, Faculty of Science and Technology, University Fernando Pessoa, 4249-004 Porto, Portugal
- Artificial Intelligence and Computer Science Laboratory, LIACC, University of Porto, 4100-000 Porto, Portugal
| | - Luciano Oliveira Macedo
- Department of Ophthalmology, Eye Hospital of Southern Minas Gerais State, Rua Joaquim Rosa 14, Itanhandu 37464-000, MG, Brazil
| | - Christophe Pinto de Almeida Soares
- ISUS Unit, Faculty of Science and Technology, University Fernando Pessoa, 4249-004 Porto, Portugal
- Artificial Intelligence and Computer Science Laboratory, LIACC, University of Porto, 4100-000 Porto, Portugal
| |
Collapse
|
4
|
Zhu W, Yuan SS, Li J, Huang CB, Lin H, Liao B. A First Computational Frame for Recognizing Heparin-Binding Protein. Diagnostics (Basel) 2023; 13:2465. [PMID: 37510209 PMCID: PMC10377868 DOI: 10.3390/diagnostics13142465] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Heparin-binding protein (HBP) is a cationic antibacterial protein derived from multinuclear neutrophils and an important biomarker of infectious diseases. The correct identification of HBP is of great significance to the study of infectious diseases. This work provides the first HBP recognition framework based on machine learning to accurately identify HBP. By using four sequence descriptors, HBP and non-HBP samples were represented by discrete numbers. By inputting these features into a support vector machine (SVM) and random forest (RF) algorithm and comparing the prediction performances of these methods on training data and independent test data, it is found that the SVM-based classifier has the greatest potential to identify HBP. The model could produce an auROC of 0.981 ± 0.028 on training data using 10-fold cross-validation and an overall accuracy of 95.0% on independent test data. As the first model for HBP recognition, it will provide some help for infectious diseases and stimulate further research in related fields.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| | - Shi-Shi Yuan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, ABa Teachers University, Chengdu 623002, China
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
5
|
Sangchocanonta S, Ingpochai S, Puangarom S, Munthuli A, Phienphanich P, Itthipanichpong R, Chansangpetch S, Manassakorn A, Ratanawongphaibul K, Tantisevi V, Rojanapongpun P, Tantibundhit C. Donut: Augmentation Technique for Enhancing The Efficacy of Glaucoma Suspect Screening. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083547 DOI: 10.1109/embc40787.2023.10341115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Glaucoma is the second most common cause of blindness. A glaucoma suspect has risk factors that increase the possibility of developing glaucoma. Evaluating a patient with suspected glaucoma is challenging. The "donut method" was developed in this study as an augmentation technique for obtaining high-quality fundus images for training ConvNeXt-Small model. Fundus images from GlauCUTU-DATA, labelled by randomizing at least 3 well-trained ophthalmologists (4 well-trained ophthalmologists in case of no majority agreement) with a unanimous agreement (3/3) and majority agreement (2/3), were used in the experiment. The experimental results from the proposed method showed the training model with the "donut method" increased the sensitivity of glaucoma suspects from 52.94% to 70.59% for the 3/3 data and increased the sensitivity of glaucoma suspects from 37.78% to 42.22% for the 2/3 data. This method enhanced the efficacy of classifying glaucoma suspects in both equalizing sensitivity and specificity sufficiently. Furthermore, three well-trained ophthalmologists agreed that the GradCAM++ heatmaps obtained from the training model using the proposed method highlighted the clinical criteria.Clinical relevance- The donut method for augmentation fundus images focuses on the optic nerve head region for enhancing efficacy of glaucoma suspect screening, and uses Grad-CAM++ to highlight the clinical criteria.
Collapse
|
6
|
Velpula VK, Sharma LD. Multi-stage glaucoma classification using pre-trained convolutional neural networks and voting-based classifier fusion. Front Physiol 2023; 14:1175881. [PMID: 37383146 PMCID: PMC10293617 DOI: 10.3389/fphys.2023.1175881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Aim: To design an automated glaucoma detection system for early detection of glaucoma using fundus images. Background: Glaucoma is a serious eye problem that can cause vision loss and even permanent blindness. Early detection and prevention are crucial for effective treatment. Traditional diagnostic approaches are time consuming, manual, and often inaccurate, thus making automated glaucoma diagnosis necessary. Objective: To propose an automated glaucoma stage classification model using pre-trained deep convolutional neural network (CNN) models and classifier fusion. Methods: The proposed model utilized five pre-trained CNN models: ResNet50, AlexNet, VGG19, DenseNet-201, and Inception-ResNet-v2. The model was tested using four public datasets: ACRIMA, RIM-ONE, Harvard Dataverse (HVD), and Drishti. Classifier fusion was created to merge the decisions of all CNN models using the maximum voting-based approach. Results: The proposed model achieved an area under the curve of 1 and an accuracy of 99.57% for the ACRIMA dataset. The HVD dataset had an area under the curve of 0.97 and an accuracy of 85.43%. The accuracy rates for Drishti and RIM-ONE were 90.55 and 94.95%, respectively. The experimental results showed that the proposed model performed better than the state-of-the-art methods in classifying glaucoma in its early stages. Understanding the model output includes both attribution-based methods such as activations and gradient class activation map and perturbation-based methods such as locally interpretable model-agnostic explanations and occlusion sensitivity, which generate heatmaps of various sections of an image for model prediction. Conclusion: The proposed automated glaucoma stage classification model using pre-trained CNN models and classifier fusion is an effective method for the early detection of glaucoma. The results indicate high accuracy rates and superior performance compared to the existing methods.
Collapse
|
7
|
Septiarini A, Hamdani H, Setyaningsih E, Junirianto E, Utaminingrum F. Automatic Method for Optic Disc Segmentation Using Deep Learning on Retinal Fundus Images. Healthc Inform Res 2023; 29:145-151. [PMID: 37190738 DOI: 10.4258/hir.2023.29.2.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/17/2023] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVES The optic disc is part of the retinal fundus image structure, which influences the extraction of glaucoma features. This study proposes a method that automatically segments the optic disc area in retinal fundus images using deep learning based on a convolutional neural network (CNN). METHODS This study used private and public datasets containing retinal fundus images. The private dataset consisted of 350 images, while the public dataset was the Retinal Fundus Glaucoma Challenge (REFUGE). The proposed method was based on a CNN with a single-shot multibox detector (MobileNetV2) to form images of the region-of-interest (ROI) using the original image resized into 640 × 640 input data. A pre-processing sequence was then implemented, including augmentation, resizing, and normalization. Furthermore, a U-Net model was applied for optic disc segmentation with 128 × 128 input data. RESULTS The proposed method was appropriately applied to the datasets used, as shown by the values of the F1-score, dice score, and intersection over union of 0.9880, 0.9852, and 0.9763 for the private dataset, respectively, and 0.9854, 0.9838 and 0.9712 for the REFUGE dataset. CONCLUSIONS The optic disc area produced by the proposed method was similar to that identified by an ophthalmologist. Therefore, this method can be considered for implementing automatic segmentation of the optic disc area.
Collapse
Affiliation(s)
- Anindita Septiarini
- Department of Informatics, Faculty of Engineering, Mulawarman University, Samarinda, Indonesia
| | - Hamdani Hamdani
- Department of Informatics, Faculty of Engineering, Mulawarman University, Samarinda, Indonesia
| | - Emy Setyaningsih
- Department of Computer, System Engineering, Institut Sains & Teknologi AKPRIND, Yogyakarta, Indonesia
| | - Eko Junirianto
- Departmen of Information Technology, Samarinda Polytechnic of Agriculture, Samarinda, Indonesia
| | - Fitri Utaminingrum
- Computer Vision Research Group, Faculty of Computer Science, Brawijaya University, Malang, Indonesia
| |
Collapse
|
8
|
Karabağ C, Ortega-Ruíz MA, Reyes-Aldasoro CC. Impact of Training Data, Ground Truth and Shape Variability in the Deep Learning-Based Semantic Segmentation of HeLa Cells Observed with Electron Microscopy. J Imaging 2023; 9:59. [PMID: 36976110 PMCID: PMC10058680 DOI: 10.3390/jimaging9030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
This paper investigates the impact of the amount of training data and the shape variability on the segmentation provided by the deep learning architecture U-Net. Further, the correctness of ground truth (GT) was also evaluated. The input data consisted of a three-dimensional set of images of HeLa cells observed with an electron microscope with dimensions 8192×8192×517. From there, a smaller region of interest (ROI) of 2000×2000×300 was cropped and manually delineated to obtain the ground truth necessary for a quantitative evaluation. A qualitative evaluation was performed on the 8192×8192 slices due to the lack of ground truth. Pairs of patches of data and labels for the classes nucleus, nuclear envelope, cell and background were generated to train U-Net architectures from scratch. Several training strategies were followed, and the results were compared against a traditional image processing algorithm. The correctness of GT, that is, the inclusion of one or more nuclei within the region of interest was also evaluated. The impact of the extent of training data was evaluated by comparing results from 36,000 pairs of data and label patches extracted from the odd slices in the central region, to 135,000 patches obtained from every other slice in the set. Then, 135,000 patches from several cells from the 8192×8192 slices were generated automatically using the image processing algorithm. Finally, the two sets of 135,000 pairs were combined to train once more with 270,000 pairs. As would be expected, the accuracy and Jaccard similarity index improved as the number of pairs increased for the ROI. This was also observed qualitatively for the 8192×8192 slices. When the 8192×8192 slices were segmented with U-Nets trained with 135,000 pairs, the architecture trained with automatically generated pairs provided better results than the architecture trained with the pairs from the manually segmented ground truths. This suggests that the pairs that were extracted automatically from many cells provided a better representation of the four classes of the various cells in the 8192×8192 slice than those pairs that were manually segmented from a single cell. Finally, the two sets of 135,000 pairs were combined, and the U-Net trained with these provided the best results.
Collapse
Affiliation(s)
- Cefa Karabağ
- giCentre, Department of Computer Science, School of Science and Technology, City, University of London, London EC1V 0HB, UK
| | - Mauricio Alberto Ortega-Ruíz
- giCentre, Department of Computer Science, School of Science and Technology, City, University of London, London EC1V 0HB, UK
- Departamento de Ingeniería, Campus Coyoacán, Universidad del Valle de México, Ciudad de México C.P. 04910, Mexico
| | | |
Collapse
|
9
|
Coan LJ, Williams BM, Krishna Adithya V, Upadhyaya S, Alkafri A, Czanner S, Venkatesh R, Willoughby CE, Kavitha S, Czanner G. Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review. Surv Ophthalmol 2023; 68:17-41. [PMID: 35985360 DOI: 10.1016/j.survophthal.2022.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023]
Abstract
Glaucoma is a leading cause of irreversible vision impairment globally, and cases are continuously rising worldwide. Early detection is crucial, allowing timely intervention that can prevent further visual field loss. To detect glaucoma an examination of the optic nerve head via fundus imaging can be performed, at the center of which is the assessment of the optic cup and disc boundaries. Fundus imaging is noninvasive and low-cost; however, image examination relies on subjective, time-consuming, and costly expert assessments. A timely question to ask is: "Can artificial intelligence mimic glaucoma assessments made by experts?" Specifically, can artificial intelligence automatically find the boundaries of the optic cup and disc (providing a so-called segmented fundus image) and then use the segmented image to identify glaucoma with high accuracy? We conducted a comprehensive review on artificial intelligence-enabled glaucoma detection frameworks that produce and use segmented fundus images and summarized the advantages and disadvantages of such frameworks. We identified 36 relevant papers from 2011 to 2021 and 2 main approaches: 1) logical rule-based frameworks, based on a set of rules; and 2) machine learning/statistical modeling-based frameworks. We critically evaluated the state-of-art of the 2 approaches, identified gaps in the literature and pointed at areas for future research.
Collapse
Affiliation(s)
- Lauren J Coan
- School of Computer Science and Mathematics, Liverpool John Moores University, UK.
| | - Bryan M Williams
- School of Computing and Communications, Lancaster University, UK
| | | | - Swati Upadhyaya
- Department of Glaucoma, Aravind Eye Hospital, Pondicherry, India
| | - Ala Alkafri
- School of Computing, Engineering & Digital Technologies, Teesside University, UK
| | - Silvester Czanner
- School of Computer Science and Mathematics, Liverpool John Moores University, UK; Faculty of Informatics and Information Technologies, Slovak University of Technology, Slovakia
| | - Rengaraj Venkatesh
- Department of Glaucoma and Chief Medical Officer, Aravind Eye Hospital, Pondicherry, India
| | | | | | - Gabriela Czanner
- School of Computer Science and Mathematics, Liverpool John Moores University, UK; Faculty of Informatics and Information Technologies, Slovak University of Technology, Slovakia
| |
Collapse
|
10
|
Liu S, Chen R, Gu Y, Yu Q, Su G, Ren Y, Huang L, Zhou F. AcneTyper: An automatic diagnosis method of dermoscopic acne image via self-ensemble and stacking. Technol Health Care 2022:THC220295. [PMID: 36617797 DOI: 10.3233/thc-220295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Acne is a skin lesion type widely existing in adolescents, and poses computational challenges for automatic diagnosis. Computer vision algorithms are utilized to detect and determine different subtypes of acne. Most of the existing acne detection algorithms are based on the facial natural images, which carry noisy factors like illuminations. OBJECTIVE In order to tackle this issue, this study collected a dataset ACNEDer of dermoscopic acne images with annotations. Deep learning methods have demonstrated powerful capabilities in automatic acne diagnosis, and they usually release the training epoch with the best performance as the delivered model. METHODS This study proposes a novel self-ensemble and stacking-based framework AcneTyper for diagnosing the acne subtypes. Instead of delivering the best epoch, AcneTyper consolidates the prediction results of all training epochs as the latent features and stacks the best subset of these latent features for distinguishing different acne subtypes. RESULTS The proposed AcneTyper framework achieves a promising detection performance of acne subtypes and even outperforms a clinical dermatologist with two-year experiences by 6.8% in accuracy. CONCLUSION The method we proposed is used to determine different subtypes of acne and outperforms inexperienced dermatologists and contributes to reducing the probability of misdiagnosis.
Collapse
Affiliation(s)
- Shuai Liu
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Ruili Chen
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yun Gu
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Guoxiong Su
- Beijing Dr. of Acne Medical Research Institute, Beijing, China
| | - Yanjiao Ren
- College of Information Technology (Smart Agriculture Research Institute), Jilin Agricultural University, Changchun, Jilin, China
| | - Lan Huang
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Fengfeng Zhou
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Song D, Li F, Li C, Xiong J, He J, Zhang X, Qiao Y. Asynchronous feature regularization and cross-modal distillation for OCT based glaucoma diagnosis. Comput Biol Med 2022; 151:106283. [PMID: 36442272 DOI: 10.1016/j.compbiomed.2022.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Glaucoma has become a major cause of vision loss. Early-stage diagnosis of glaucoma is critical for treatment planning to avoid irreversible vision damage. Meanwhile, interpreting the rapidly accumulated medical data from ophthalmic exams is cumbersome and resource-intensive. Therefore, automated methods are highly desired to assist ophthalmologists in achieving fast and accurate glaucoma diagnosis. Deep learning has achieved great successes in diagnosing glaucoma by analyzing data from different kinds of tests, such as peripapillary optical coherence tomography (OCT) and visual field (VF) testing. Nevertheless, applying these developed models to clinical practice is still challenging because of various limiting factors. OCT models present worse glaucoma diagnosis performances compared to those achieved by OCT&VF based models, whereas VF is time-consuming and highly variable, which can restrict the wide employment of OCT&VF models. To this end, we develop a novel deep learning framework that leverages the OCT&VF model to enhance the performance of the OCT model. To transfer the complementary knowledge from the structural and functional assessments to the OCT model, a cross-modal knowledge transfer method is designed by integrating a designed distillation loss and a proposed asynchronous feature regularization (AFR) module. We demonstrate the effectiveness of the proposed method for glaucoma diagnosis by utilizing a public OCT&VF dataset and evaluating it on an external OCT dataset. Our final model with only OCT inputs achieves the accuracy of 87.4% (3.1% absolute improvement) and AUC of 92.3%, which are on par with the OCT&VF joint model. Moreover, results on the external dataset sufficiently indicate the effectiveness and generalization capability of our model.
Collapse
Affiliation(s)
- Diping Song
- Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jian Xiong
- Ophthalmic Center, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Junjun He
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Yu Qiao
- Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| |
Collapse
|
12
|
Riza Rizky LM, Suyanto S. Adversarial training and deep k-nearest neighbors improves adversarial defense of glaucoma severity detection. Heliyon 2022; 8:e12275. [DOI: 10.1016/j.heliyon.2022.e12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
|
13
|
Nawaldgi S, Lalitha YS. Automated glaucoma assessment from color fundus images using structural and texture features. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|