1
|
Qasmi N, Bibi R, Rashid S. Recognition of Conus species using a combined approach of supervised learning and deep learning-based feature extraction. PLoS One 2024; 19:e0313329. [PMID: 39652613 PMCID: PMC11627371 DOI: 10.1371/journal.pone.0313329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
Cone snails are venomous marine gastropods comprising more than 950 species widely distributed across different habitats. Their conical shells are remarkably similar to those of other invertebrates in terms of color, pattern, and size. For these reasons, assigning taxonomic signatures to cone snail shells is a challenging task. In this report, we propose an ensemble learning strategy based on the combination of Random Forest (RF) and XGBoost (XGB) methods. We used 47,600 cone shell images of uniform size (224 x 224 pixels), which were split into an 80:20 train-test ratio. Prior to performing subsequent operations, these images were subjected to pre-processing and transformation. After applying a deep learning approach (Visual Geometry Group with a 16-layer deep model architecture) for feature extraction, model specificity was further assessed by including multiple related and unrelated seashell images. Both classifiers demonstrated comparable recognition ability on random test samples. The evaluation results suggested that RF outperformed XGB due to its high accuracy in recognizing Conus species, with an average precision of 95.78%. The area under the receiver operating characteristic curve was 0.99, indicating the model's optimal performance. The learning and validation curves also demonstrated a robust fit, with the training score reaching 1 and the validation score gradually increasing to 95 as more data was provided. These values indicate a well-trained model that generalizes effectively to validation data without significant overfitting. The gradual improvement in the validation score curve is crucial for ensuring model reliability and minimizing the risk of overfitting. Our findings revealed an interactive visualization. The performance of our proposed model suggests its potential for use with datasets of other mollusks, and optimal results may be achieved for their categorization and taxonomical characterization.
Collapse
Affiliation(s)
- Noshaba Qasmi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rimsha Bibi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
2
|
Ita K, Prinze J. Machine learning for skin permeability prediction: random forest and XG boost regression. J Drug Target 2024; 32:57-65. [PMID: 37962433 DOI: 10.1080/1061186x.2023.2284096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Background: Machine learning algorithms that can quickly and easily estimate skin permeability (Kp) are increasingly being used in drug delivery research. The linear free energy relationship (LFER) developed by Abraham is a practical technique for predicting Kp. The permeability coefficients and Abraham solute descriptor values for 175 organic compounds have been documented in the scientific literature.Purpose: The purpose of this project was to use a publicly available dataset to make skin permeability predictions using the random forest and XBoost regression techniques.Methods: We employed Pandas-based methods in JupyterLab to predict permeability coefficient (Kp) from solute descriptors (excess molar refraction [E], combined dipolarity/polarizability [S], overall solute hydrogen bond acidity and basicity [A and B], and the McGowan's characteristic molecular volume [V]).Results: The random forest and XG Boost regression models established statistically significant association between the descriptors and the skin permeability coefficient.
Collapse
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Vallejo, CA, USA
| | - Joyce Prinze
- College of Pharmacy, Touro University, Vallejo, CA, USA
| |
Collapse
|
3
|
Zhu W, Tang X, Chen Y, Chen M, Han X, Xie Y, Lv Q, Wei R, Zhou D, Yang C, Zhang T. Prediction of SARS-CoV-2 infection cases based on the meta-SEIRS model. Epidemiol Infect 2024; 152:e144. [PMID: 39552127 PMCID: PMC11574606 DOI: 10.1017/s0950268824001274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Predicting epidemic trends of coronavirus disease 2019 (COVID-19) remains a key public health concern globally today. However, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection rate in previous studies of the transmission dynamics model was mostly a fixed value. Therefore, we proposed a meta-Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model by adding a time-varying SARS-CoV-2 reinfection rate to the transmission dynamics model to more accurately characterize the changes in the number of infected persons. The time-varying reinfection rate was estimated using random-effect multivariate meta-regression based on published literature reports of SARS-CoV-2 reinfection rates. The meta-SEIRS model was constructed to predict the epidemic trend of COVID-19 from February to December 2023 in Sichuan province. Finally, according to the online questionnaire survey, the SARS-CoV-2 infection rate at the end of December 2022 in Sichuan province was 82.45%. The time-varying effective reproduction number in Sichuan province had two peaks from July to December 2022, with a maximum peak value of about 15. The prediction results based on the meta-SEIRS model showed that the highest peak of the second wave of COVID-19 in Sichuan province would be in late May 2023. The number of new infections per day at the peak would be up to 2.6 million. We constructed a meta-SEIRS model to predict the epidemic trend of COVID-19 in Sichuan province, which was consistent with the trend of SARS-CoV-2 positivity in China. Therefore, a meta-SEIRS model parameterized based on evidence-based data can be more relevant to the actual situation and thus more accurately predict future trends in the number of infections.
Collapse
Affiliation(s)
- Wenhui Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu610065, China
| | - Xuefeng Tang
- Sichuan Center for Disease Control and Prevention, Chengdu610041, China
| | - Ying Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu610065, China
| | - Miaoshuang Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu610065, China
| | - Xinyue Han
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu610065, China
| | - Yuhuan Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu610065, China
| | - Qiang Lv
- Sichuan Center for Disease Control and Prevention, Chengdu610041, China
| | - Rongjie Wei
- Sichuan Center for Disease Control and Prevention, Chengdu610041, China
| | - Dingzi Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu610065, China
| | - Changhong Yang
- Sichuan Center for Disease Control and Prevention, Chengdu610041, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu610065, China
| |
Collapse
|
4
|
Wang K, Ghafurian M, Chumachenko D, Cao S, Butt ZA, Salim S, Abhari S, Morita PP. Application of artificial intelligence in active assisted living for aging population in real-world setting with commercial devices - A scoping review. Comput Biol Med 2024; 173:108340. [PMID: 38555702 DOI: 10.1016/j.compbiomed.2024.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/23/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The aging population is steadily increasing, posing new challenges and opportunities for healthcare systems worldwide. Technological advancements, particularly in commercially available Active Assisted Living devices, offer a promising alternative. These readily accessible products, ranging from smartwatches to home automation systems, are often equipped with Artificial Intelligence capabilities that can monitor health metrics, predict adverse events, and facilitate a safer living environment. However, there is no review exploring how Artificial Intelligence has been integrated into commercially available Active Assisted Living technologies, and how these devices monitor health metrics and provide healthcare solutions in a real-world environment for healthy aging. This review is essential because it fills a knowledge gap in understanding AI's integration in Active Assisted Living technologies in promoting healthy aging in real-world settings, identifying key issues that require to be addressed in future studies. OBJECTIVE The aim of this overview is to outline current understanding, identify potential research opportunities, and highlight research gaps from published studies regarding the use of Artificial Intelligence in commercially available Active Assisted Living technologies that assists older individuals aging at home. METHODS A comprehensive search was conducted in six databases-PubMed, CINAHL, IEEE Xplore, Scopus, ACM Digital Library, and Web of Science-to identify relevant studies published over the past decade from 2013 to 2024. Our methodology adhered to the PRISMA extension for scoping reviews to ensure rigor and transparency throughout the review process. After applying predefined inclusion and exclusion criteria on 825 retrieved articles, a total of 64 papers were included for analysis and synthesis. RESULTS Several trends emerged from our analysis of the 64 selected papers. A majority of the work (39/64, 61%) was published after the year 2020. Geographically, most of the studies originated from East Asia and North America (36/64, 56%). The primary application goal of Artificial Intelligence in the reviewed literature was focused on activity recognition (34/64, 53%), followed by daily monitoring (10/64, 16%). Methodologically, tree-based and neural network-based approaches were the most prevalent Artificial Intelligence algorithms used in studies (32/64, 50% and 31/64, 48% respectively). A notable proportion of the studies (32/64, 50%) carried out their research using specially designed smart home testbeds that simulate the conditions in real-world. Moreover, ambient technology was a common thread (49/64, 77%), with occupancy-related data (such as motion and electrical appliance usage logs) and environmental sensors (indicators like temperature and humidity) being the most frequently used. CONCLUSION Our results suggest that Artificial Intelligence has been increasingly deployed in the real-world Active Assisted Living context over the past decade, offering a variety of applications aimed at healthy aging and facilitating independent living for the older adults. A wide range of smart home indicators were leveraged for comprehensive data analysis, exploring and enhancing the potentials and effectiveness of solutions. However, our review has identified multiple research gaps that need further investigation. First, most research has been conducted in controlled testbed environments, leaving a lack of real-world applications that could validate the technologies' efficacy and scalability. Second, there is a noticeable absence of research leveraging cloud technology, an essential tool for large-scale deployment and standardized data collection and management. Future work should prioritize these areas to maximize the potential benefits of Artificial Intelligence in Active Assisted Living settings.
Collapse
Affiliation(s)
- Kang Wang
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Moojan Ghafurian
- Department of Systems Design Engineering, University of Waterloo, ON, Canada
| | - Dmytro Chumachenko
- National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine
| | - Shi Cao
- Department of Systems Design Engineering, University of Waterloo, ON, Canada
| | - Zahid A Butt
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Shahan Salim
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Shahabeddin Abhari
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Plinio P Morita
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada; Department of Systems Design Engineering, University of Waterloo, ON, Canada; Centre for Digital Therapeutics, Techna Institute, University Health Network, Toronto, ON, Canada; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Rajeshkumar C, Soundar KR. TO-LAB model: Real time Touchless Lung Abnormality detection model using USRP based machine learning algorithm. Technol Health Care 2024; 32:4309-4330. [PMID: 38968032 PMCID: PMC11613129 DOI: 10.3233/thc-240149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/09/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Due to the increasing prevalence of respiratory diseases and the importance of early diagnosis. The need for non-invasive and touchless medical diagnostic solutions has become increasingly crucial in modern healthcare to detect lung abnormalities. OBJECTIVE Existing methods for lung abnormality detection often rely on invasive and time-consuming procedures limiting their effectiveness in real-time diagnosis. This work introduces a novel Touchless Lung Abnormality (TO-LAB) detection model utilizing universal software radio peripherals (USRP) and machine learning algorithms. METHODS The TO-LAB model integrates a blood pressure meter and an RGB-D depth-sensing camera to gather individual data without physical contact. Heart rate (HR) is analyzed through image conversion to IPPG signals, while blood pressure (BP) is obtained via analog conversion from the blood pressure meter. This touchless imaging setup facilitates the extraction of essential signal features crucial for respiratory pattern analysis. Advanced computer vision algorithms like Mel-frequency cepstral coefficients (MFCC) and Principal Component Analysis (PCA) process the acquired data to focus on breathing abnormalities. These features are then combined and inputted into a machine learning-based Multi-class SVM for breathing activity analysis. The Multi-class SVM categorizes breathing abnormalities as normal, shallow, or elevated based on the fused features. The efficiency of this TO-LAB model is evaluated with the simulated and real-time data. RESULTS According to the findings, the proposed TO-LAB model attains the maximum accuracy of 96.15% for real time data; however, the accuracy increases to 99.54% for simulated data for the efficient classification of breathing abnormalities. CONCLUSION From this analysis, our model attains better results in simulated data but it declines the accuracy while processing with real-time data. Moreover, this work has a significant medical impact since it presents a solution to the problem of gathering enough data during the epidemic to create a realistic model with a large dataset.
Collapse
Affiliation(s)
- C. Rajeshkumar
- Department of Information Technology, Sri Krishna College of Technology, Coimbatore, India
| | - K. Ruba Soundar
- Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi, India
| |
Collapse
|
6
|
Zheng J, Zhang Z, Wang J, Zhao R, Liu S, Yang G, Liu Z, Deng Z. Metabolic syndrome prediction model using Bayesian optimization and XGBoost based on traditional Chinese medicine features. Heliyon 2023; 9:e22727. [PMID: 38125549 PMCID: PMC10730568 DOI: 10.1016/j.heliyon.2023.e22727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic syndrome (MetS) has a high prevalence and is prone to many complications. However, current MetS diagnostic methods require blood tests that are not conducive to self-testing, so a user-friendly and accurate method for predicting MetS is needed to facilitate early detection and treatment. In this study, a MetS prediction model based on a simple, small number of Traditional Chinese Medicine (TCM) clinical indicators and biological indicators combined with machine learning algorithms is investigated. Electronic medical record data from 2040 patients who visited outpatient clinics at Guangdong Chinese medicine hospitals from 2020 to 2021 were used to investigate the fusion of Bayesian optimization (BO) and eXtreme gradient boosting (XGBoost) in order to create a BO-XGBoost model for screening nineteen key features in three categories: individual bio-information, TCM indicators, and TCM habits that influence MetS prediction. Subsequently, the predictive diagnostic model for MetS was developed. The experimental results revealed that the model proposed in this paper achieved values of 93.35 %, 90.67 %, 80.40 %, and 0.920 for the F1, sensitivity, FRS, and AUC metrics, respectively. These values outperformed those of the seven other tested machine learning models. Finally, this study developed an intelligent prediction application for MetS based on the proposed model, which can be utilized by ordinary users to perform self-diagnosis through a web-based questionnaire, thereby accomplishing the objective of early detection and intervention for MetS.
Collapse
Affiliation(s)
- Jianhua Zheng
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510630, China
| | - Zihao Zhang
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jinhe Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ruolin Zhao
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shuangyin Liu
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510630, China
| | - Gaolin Yang
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhengjie Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhengyuan Deng
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Network and Educational Technology Center, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
7
|
Boikanyo K, Zungeru AM, Sigweni B, Yahya A, Lebekwe C. Remote Patient Monitoring Systems: Applications, Architecture, and Challenges. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
8
|
Zhang T, Lin Y, He W, Yuan F, Zeng Y, Zhang S. GCN-GENE: A novel method for prediction of coronary heart disease-related genes. Comput Biol Med 2022; 150:105918. [PMID: 36215847 DOI: 10.1016/j.compbiomed.2022.105918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022]
Abstract
Coronary heart disease is the most common heart disease, it can induce myocardial infarction, and the cause of the disease has a lot to do with life and eating habits. The results of a large number of epidemiological studies at home and abroad show that the incidence of coronary heart disease has an obvious familial tendency. However, little is known about the genetic factors of coronary heart disease. Although genome-wide association analysis and gene knockout experiments have found some genes related to coronary heart disease, there are still a large number of genes potentially related to coronary heart disease that have not been discovered. If it is confirmed by biological experimental means, the time and money cost is too high. Therefore, it is urgent to identify genes related to coronary heart disease on a large scale by computational means, so as to conduct targeted biological experimental verification. This paper proposes a deep learning method based on biological networks for the identification of coronary heart disease-related genes. We constructed gene interaction networks and extracted gene expression levels in different tissues as features. Through the association information and expression characteristics between genes, we constructed a model of coronary heart disease-related genes. Through cross-validation, we found that our proposed GCN-GENE that has AUC as 0.75 and AUPR as 0.78, which is more accurate than other methods and is a reliable method for predicting coronary heart disease-related genes.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China.
| | - Yixuan Lin
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China.
| | - Weimin He
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China.
| | - FengXin Yuan
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China.
| | - Yu Zeng
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China.
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Lai DKH, Zha LW, Leung TYN, Tam AYC, So BPH, Lim HJ, Cheung DSK, Wong DWC, Cheung JCW. Dual ultra-wideband (UWB) radar-based sleep posture recognition system: Towards ubiquitous sleep monitoring. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
A new brain tumor diagnostic model: Selection of textural feature extraction algorithms and convolution neural network features with optimization algorithms. Comput Biol Med 2022; 148:105857. [PMID: 35868050 DOI: 10.1016/j.compbiomed.2022.105857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
Brain tumors are one of the most dangerous diseases that affect human health and maybe result in death. Detection of brain tumors can be made by using biopsy. However, this is an invasive procedure. It is an extremely dangerous procedure because it can cause bleeding and damage certain brain functions. For this reason, the type and the stage of the disease can be determined after a detailed examination by medical imaging techniques made by field experts. In this study, a computer-based hybrid diagnostic model with high accuracy rate is proposed to diagnose normal brain and brain having types of tumors from brain images obtained by magnetic resonance imaging (MRI) techniques. This diagnostic model consists of three stages. In the first stage, the features of the images were obtained with two different traditional methods, which are widely used in the literature, and the results were examined. In the second stage, different convolutional neural networks that can learn comprehensive information about images were used and the results were tested by obtaining the features of the images. In the third stage, all the feature sets that are obtained were combined, and genetic algorithms, particle swarm optimization technique and artificial bee colony optimization techniques were used for feature selection. The common features of the optimization techniques were used only once. Thus, metaheuristic optimization algorithms were used for feature selection and distinctive features of the images appeared. Feature sets were classified using support vector machine kernels. The proposed diagnostic model is better than the directly used methods with an accuracy rate of 98.22%. Consequently, this method can also be used in clinic service to diagnose tumor by using images of brain MRI.
Collapse
|
11
|
Unursaikhan B, Amarsanaa G, Sun G, Hashimoto K, Purevsuren O, Choimaa L, Matsui T. Development of a Novel Vital-Signs-Based Infection Screening Composite-Type Camera With Truncus Motion Removal Algorithm to Detect COVID-19 Within 10 Seconds and Its Clinical Validation. Front Physiol 2022; 13:905931. [PMID: 35812332 PMCID: PMC9257080 DOI: 10.3389/fphys.2022.905931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: To conduct a rapid preliminary COVID-19 screening prior to polymerase chain reaction (PCR) test under clinical settings, including patient’s body moving conditions in a non-contact manner, we developed a mobile and vital-signs-based infection screening composite-type camera (VISC-Camera) with truncus motion removal algorithm (TMRA) to screen for possibly infected patients. Methods: The VISC-Camera incorporates a stereo depth camera for respiratory rate (RR) determination, a red–green–blue (RGB) camera for heart rate (HR) estimation, and a thermal camera for body temperature (BT) measurement. In addition to the body motion removal algorithm based on the region of interest (ROI) tracking for RR, HR, and BT determination, we adopted TMRA for RR estimation. TMRA is a reduction algorithm of RR count error induced by truncus non-respiratory front-back motion measured using depth-camera-determined neck movement. The VISC-Camera is designed for mobile use and is compact (22 cm × 14 cm × 4 cm), light (800 g), and can be used in continuous operation for over 100 patients with a single battery charge. The VISC-Camera discriminates infected patients from healthy people using a logistic regression algorithm using RR, HR, and BT as explanatory variables. Results are available within 10 s, including imaging and processing time. Clinical testing was conducted on 154 PCR positive COVID-19 inpatients (aged 18–81 years; M/F = 87/67) within the initial 48 h of hospitalization at the First Central Hospital of Mongolia and 147 healthy volunteers (aged 18–85 years, M/F = 70/77). All patients were on treatment with antivirals and had body temperatures <37.5°C. RR measured by visual counting, pulsimeter-determined HR, and BT determined by thermometer were used for references. Result: 10-fold cross-validation revealed 91% sensitivity and 90% specificity with an area under receiver operating characteristic curve of 0.97. The VISC-Camera-determined HR, RR, and BT correlated significantly with those measured using references (RR: r = 0.93, p < 0.001; HR: r = 0.97, p < 0.001; BT: r = 0.72, p < 0.001). Conclusion: Under clinical settings with body motion, the VISC-Camera with TMRA appears promising for the preliminary screening of potential COVID-19 infection for afebrile patients with the possibility of misdiagnosis as asymptomatic.
Collapse
Affiliation(s)
- Batbayar Unursaikhan
- Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
- Machine Intelligence Laboratory, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | | | - Guanghao Sun
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Kenichi Hashimoto
- Department of General Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Otgonbat Purevsuren
- Machine Intelligence Laboratory, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Lodoiravsal Choimaa
- Machine Intelligence Laboratory, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Takemi Matsui
- Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
- *Correspondence: Takemi Matsui,
| |
Collapse
|
12
|
Heidari A, Jafari Navimipour N, Unal M, Toumaj S. Machine learning applications for COVID-19 outbreak management. Neural Comput Appl 2022; 34:15313-15348. [PMID: 35702664 PMCID: PMC9186489 DOI: 10.1007/s00521-022-07424-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Recently, the COVID-19 epidemic has resulted in millions of deaths and has impacted practically every area of human life. Several machine learning (ML) approaches are employed in the medical field in many applications, including detecting and monitoring patients, notably in COVID-19 management. Different medical imaging systems, such as computed tomography (CT) and X-ray, offer ML an excellent platform for combating the pandemic. Because of this need, a significant quantity of study has been carried out; thus, in this work, we employed a systematic literature review (SLR) to cover all aspects of outcomes from related papers. Imaging methods, survival analysis, forecasting, economic and geographical issues, monitoring methods, medication development, and hybrid apps are the seven key uses of applications employed in the COVID-19 pandemic. Conventional neural networks (CNNs), long short-term memory networks (LSTM), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, random forest, and other ML techniques are frequently used in such scenarios. Next, cutting-edge applications related to ML techniques for pandemic medical issues are discussed. Various problems and challenges linked with ML applications for this pandemic were reviewed. It is expected that additional research will be conducted in the upcoming to limit the spread and catastrophe management. According to the data, most papers are evaluated mainly on characteristics such as flexibility and accuracy, while other factors such as safety are overlooked. Also, Keras was the most often used library in the research studied, accounting for 24.4 percent of the time. Furthermore, medical imaging systems are employed for diagnostic reasons in 20.4 percent of applications.
Collapse
Affiliation(s)
- Arash Heidari
- Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | | | - Mehmet Unal
- Department of Computer Engineering, Nisantasi University, Istanbul, Turkey
| | - Shiva Toumaj
- Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
13
|
Visible-NIR hyperspectral classification of grass based on multivariate smooth mapping and extreme active learning approach. Sci Rep 2022; 12:9017. [PMID: 35637264 PMCID: PMC9151682 DOI: 10.1038/s41598-022-13136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Grass community classification is the basis for the development of animal husbandry and dynamic monitoring of environment, which has become a critical problem to further strengthen the intelligent management of grassland. Compared with grass survey based on satellite remote sensing, the visible near infrared (NIR) hyperspectral not only monitor dynamically in a short distance, but also have high dimensions and detailed spectral information in each pixel. However, the hyperspectral labeled sample for classification is expensive and manual selection is more subjective. In order to solve above limitations, we proposed a visible-NIR hyperspectral classification model for grass based on multivariate smooth mapping and extreme active learning (MSM–EAL). Firstly, MSM is used to preprocess and reconstruct the spectrum. Secondly, by jointing XGBoost and active learning (AL), the advanced samples with the largest amount of information are actively selected to improve the performance of target classification. Innovation lies in: (1) MSM global enhanced preprocessing spectral reconstruction algorithm is proposed, in which isometric feature mapping is effectively applied to the grass hyperspectral for the first time. (2) EAL framework is constructed to solve the issue of high cost and small number for hyperspectral labeled samples, at the same time, enhance the physical essence behind spectral classification more intuitively. A field hyperspectral collection platform is assembled to establish nm resolution visible-NIR hyperspectral dataset of grass, Grass1, containing 750 samples, which to verify the effectiveness of the model. Experiments on the Grass1 dataset confirmed that compared with the full spectrum, the time consumption of MSM was reduced by 9.471 s with guaranteed overall accuracy (OA). Comparing EAL with AL, and other classification algorithms, EAL improves OA 22.2% over AL, and XAL has the best performance value on Kappa, Macro, Recall and F1-score, respectively. Altogether, the lightweight MSM–EAL model realizes intelligent and real-time classification, providing a new method for obtaining high-precision inter group classification of grass.
Collapse
|
14
|
Wu H, Liang Q, Zhang W, Zou Q, El-Latif Hesham A, Liu B. iLncDA-LTR: Identification of lncRNA-disease associations by learning to rank. Comput Biol Med 2022; 146:105605. [PMID: 35594681 DOI: 10.1016/j.compbiomed.2022.105605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Identifying the associations between lncRNAs and diseases is helpful for the treatment and diagnosis of complex diseases. The existing computational methods mainly focus on the identification of associations between known lncRNAs and known diseases. However, with the application of high-throughput sequencing in lncRNA research, more and more lncRNAs have been detected. Predicting diseases related with newly detected lncRNAs has not been fully explored. Therefore, there is an urgent need for developing powerful computational methods to predict diseases related with newly detected lncRNAs. In this paper, we propose a Learning to Rank (LTR)-based method called iLncDA-LTR to predict diseases related with newly detected lncRNAs. iLncDA-LTR treats this task as an information retrieval task. The newly detected lncRNAs and diseases are considered as queries and documents, respectively. For a given newly detected lncRNA (query), iLncDA-LTR integrates multiple relevant information into LTR for predicting candidate diseases associated with query lncRNA. Experimental results show that iLncDA-LTR outperforms the other exiting state-of-the-art predictors on independent dataset. The corresponding web server of iLncDA-LTR has been constructed as well (http://bliulab.net/iLncDA-LTR/).
Collapse
Affiliation(s)
- Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Qi Liang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Wenxiang Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
15
|
Lv H, Yan K, Guo Y, Zou Q, Hesham AEL, Liu B. AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning. Comput Biol Med 2022; 146:105577. [PMID: 35576825 DOI: 10.1016/j.compbiomed.2022.105577] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022]
Abstract
Antimicrobial peptides (AMPs) are important for the human immune system and are currently applied in clinical trials. AMPs have been received much attention for accurate recognition. Recently, several computational methods for identifying AMPs have been proposed. However, existing methods have difficulty in accurately predicting AMPs. In this paper, we propose a novel AMP prediction method called AMPpred-EL based on an ensemble learning strategy. AMPred-EL is constructed based on ensemble learning combined with LightGBM and logistic regression. Experimental results demonstrate that AMPpred-EL outperforms several state-of-the-art methods on the benchmark datasets and then improves the efficiency performance.
Collapse
Affiliation(s)
- Hongwu Lv
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yichen Guo
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|