1
|
Dhongade D, Captain K, Dahiya S. EEG-based schizophrenia detection: integrating discrete wavelet transform and deep learning. Cogn Neurodyn 2025; 19:62. [PMID: 40256687 PMCID: PMC12006578 DOI: 10.1007/s11571-025-10248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
Millions of people worldwide are afflicted with the psychological disease Schizophrenia (SZ). Symptoms of SZ include delusions, hallucinations, disoriented speech, and confused thinking. This disorder is manually diagnosed by a skilled medical practitioner. Nowadays, machine learning and deep learning techniques based on electroencephalogram (EEG) signals have been proposed to support medical practitioners. This paper proposes a deep learning system and a wavelet transform-based computer-aided detection method for detecting SZ disorder. The proposed technique aims to present a highly accurate EEG signal-based SZ detection technique. In this work, we first separate the EEG signal into sub-bands and extract the features for each sub-band using the Discrete Wavelet Transform (DWT). We have explored different mother wavelets and decomposition levels for the DWT setting; it is found that the Daubechies (db4) wavelet with 7-level decomposition performs the best for SZ detection. After obtaining the gathered features, the multilayer perceptron neural network (MLP) applies them to differentiate between SZ patients and healthy controls (HC). We validate our proposed automated SZ detection method using two publicly available datasets, Dataset-1 (DS1) with 81 records (32-HC and 49-SZ) and Dataset-2 (DS2) with 28 records (14-HC and 14-SZ), respectively. Compared with previous work, our proposed model surpasses the state-of-the-art technique for SZ detection. Our classification accuracy has increased, achieving an accuracy of 99.61% and 99.12% for DS1 and DS2. Our proposed method for identifying SZ using EEG signals is more reliable and accurate and is ready to support physicians in diagnosing SZ.
Collapse
Affiliation(s)
- Dayanand Dhongade
- Electronics and Telecommunication Engineering Department, Ramrao Adik Institute of Technology, Nerul, Navi Mumbai, Maharashtra 400706 India
| | - Kamal Captain
- Electronics Department, Sardar Vallabhbhai National Institute of Technology, Surat-Dumas Road, Surat, Gujrat 395007 India
| | - Suresh Dahiya
- Electronics Department, Sardar Vallabhbhai National Institute of Technology, Surat-Dumas Road, Surat, Gujrat 395007 India
| |
Collapse
|
2
|
Rao AP, Ranjan R, Sahana BC, Kumar GP. SchizoLMNet: a modified lightweight MobileNetV2- architecture for automated schizophrenia detection using EEG-derived spectrograms. Phys Eng Sci Med 2025; 48:285-299. [PMID: 39760847 DOI: 10.1007/s13246-024-01512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Schizophrenia (SZ) is a chronic neuropsychiatric disorder characterized by disturbances in cognitive, perceptual, social, emotional, and behavioral functions. The conventional SZ diagnosis relies on subjective assessments of individuals by psychiatrists, which can result in bias, prolonged procedures, and potentially false diagnoses. This emphasizes the crucial need for early detection and treatment of SZ to provide timely support and minimize long-term impacts. Utilizing the ability of electroencephalogram (EEG) signals to capture brain activity dynamics, this article introduces a novel lightweight modified MobileNetV2- architecture (SchizoLMNet) for efficiently diagnosing SZ using spectrogram images derived from selected EEG channel data. The proposed methodology involves preprocessing of raw EEG data of 81 subjects collected from Kaggle data repository. Short-time Fourier transform (STFT) is applied to transform pre-processed EEG signals into spectrogram images followed by data augmentation. Further, the generated images are subjected to deep learning (DL) models to perform the binary classification task. Utilizing the proposed model, it achieved accuracies of 98.17%, 97.03%, and 95.55% for SZ versus healthy classification in hold-out, subject independent testing, and subject-dependent testing respectively. The SchizoLMNet model demonstrates superior performance compared to various pretrained DL models and state-of-the-art techniques. The proposed framework will be further translated into real-time clinical settings through a mobile edge computing device. This innovative approach will serve as a bridge between medical staff and patients, facilitating intelligent communication and assisting in effective SZ management.
Collapse
Affiliation(s)
- A Prabhakara Rao
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad, Telangana, 500043, India
| | - Rakesh Ranjan
- Department of Electronics and Communication Engineering, National Institute of Technology Patna, Bihar, 800005, India.
- School of Computer Science, UPES, Dehradun, Uttarakhand, 248007, India.
| | - Bikash Chandra Sahana
- Department of Electronics and Communication Engineering, National Institute of Technology Patna, Bihar, 800005, India
| | - G Prasanna Kumar
- Department of Electronics and Communication Engineering, Vishnu Institute of Technology, Bhimavaram, Andhra Pradesh, 534202, India
| |
Collapse
|
3
|
Jiang S, Jia Q, Peng Z, Zhou Q, An Z, Chen J, Yi Q. Can artificial intelligence be the future solution to the enormous challenges and suffering caused by Schizophrenia? SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:32. [PMID: 40021674 PMCID: PMC11871033 DOI: 10.1038/s41537-025-00583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
This study evaluated the potential of artificial intelligence (AI) in the diagnosis, treatment, and prognostic assessment of schizophrenia (SZ) and explored collaborative directions for AI applications in future medical innovations. SZ is a severe mental disorder that causes significant suffering and imposes challenges on patients. With the rapid advancement of machine learning and deep learning technologies, AI has demonstrated notable advantages in the early diagnosis of high-risk populations. By integrating multidimensional biomarkers and linguistic behavior data of patients, AI can provide further objective and precise diagnostic criteria. Moreover, it aids in formulating personalized treatment plans, enhancing therapeutic outcomes, and offering new therapeutic strategies for patients with treatment-resistant SZ. Furthermore, AI excels in developing individualized prognostic plans, which enables the rapid identification of disease progression, accurate prediction of disease trajectory, and timely adjustment of treatment strategies, thereby improving prognosis and facilitating recovery. Despite the immense potential of AI in SZ management, its role as an auxiliary tool must be emphasized, with clinical judgment and compassionate care from healthcare professionals remaining crucial. Future research should focus on optimizing human-machine interactions to achieve efficient AI application in SZ management. The in-depth integration of AI technology into clinical practice will advance the field of SZ, ultimately improving the quality of life and treatment outcomes of patients.
Collapse
Affiliation(s)
- Shijie Jiang
- Department of Medical Psychology, the first Affiliated Hospital of Xinjiang Medical University, Xinjiang Clinical Research Center for Mental Health, Urumqi, 830011, Xinjiang, China
| | - Qiyu Jia
- Department of Trauma Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Zhenlei Peng
- Department of Medical Psychology, the first Affiliated Hospital of Xinjiang Medical University, Xinjiang Clinical Research Center for Mental Health, Urumqi, 830011, Xinjiang, China
| | - Qixuan Zhou
- Department of Medical Psychology, the first Affiliated Hospital of Xinjiang Medical University, Xinjiang Clinical Research Center for Mental Health, Urumqi, 830011, Xinjiang, China
| | - Zhiguo An
- Department of Medical Psychology, the first Affiliated Hospital of Xinjiang Medical University, Xinjiang Clinical Research Center for Mental Health, Urumqi, 830011, Xinjiang, China.
| | - Jianhua Chen
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Qizhong Yi
- Department of Medical Psychology, the first Affiliated Hospital of Xinjiang Medical University, Xinjiang Clinical Research Center for Mental Health, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
4
|
Telangore H, Sharma N, Sharma M, Acharya UR. A novel ECG-based approach for classifying psychiatric disorders: Leveraging wavelet scattering networks. Med Eng Phys 2025; 135:104275. [PMID: 39922653 DOI: 10.1016/j.medengphy.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 02/10/2025]
Abstract
Individuals with neuropsychiatric disorders experience both physical and mental difficulties, hindering their ability to live healthy lives and participate in daily activities. It is challenging to diagnose these disorders due to a lack of reliable diagnostic tests and the complex symptoms and treatments for various disorders. Generally, psychiatric disorders are identified manually by doctors using questionnaires, which may be prone to subjectivity and human errors. A few automated systems have recently been developed to identify these disorders using physiological signals, including electroencephalogram (EEG) and electrocardiogram (ECG) signals. Often, EEG signals are used to identify psychiatric disorders, but the EEG signals are nonlinear and non-stationary in nature and hence are relatively complex to analyze when compared to the ECG signals. The ECG signals in psychiatric patients are used due to the connection between the heart and brain. The proposed study is aimed at investigating the use of ECG signals for the automated identification of neuropsychiatric disorders, including bipolar disorder (BD), depression (DP), and schizophrenia (SZ). Generally, convolution neural networks (CNNs) have proven to be effective in accurately identifying psychological conditions. However, their application requires a large amount of data and technical expertise. The wavelet scattering network (WSN), a variant of CNNs, was introduced to overcome these limitations. The WSN is a network capable of accurately detecting unique patterns in the signal. The proposed research incorporated the WSN network and was conducted using a Psychiatric ECG Beat Dataset with a population of 233 subjects, of whom 198 were diagnosed with multiple psychiatric disorders, and 35 were control subjects. ECG signals from 3570 heartbeats were collected and analyzed using wavelet scattering-based feature extraction and machine learning techniques. The Fine K-Nearest Neighbor (FKNN) algorithm produced the best results with an average classification accuracy of 99.8% and a Kappa value of 0.996 using a ten-fold cross-validation. The model yielded an accuracy of 99.78%, 99.94%, 99.98%, and 100% for automated identification of BD, DP, SZ, and control subjects, respectively, with F1 scores and precision values close to 1. The proposed method could also help in the automated clinical detection of different psychiatric disorders.
Collapse
Affiliation(s)
- Hardik Telangore
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Nishant Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| |
Collapse
|
5
|
Sathiya E, Rao TD, Kumar TS. A comparative study of wavelet families for schizophrenia detection. Front Hum Neurosci 2024; 18:1463819. [PMID: 39720022 PMCID: PMC11666512 DOI: 10.3389/fnhum.2024.1463819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Schizophrenia (SZ) is a chronic mental disorder, affecting approximately 1% of the global population, it is believed to result from various environmental factors, with psychological factors potentially influencing its onset and progression. Discrete wavelet transform (DWT)-based approaches are effective in SZ detection. In this report, we aim to investigate the effect of wavelet and decomposition levels in SZ detection. In our study, we analyzed the early detection of SZ using DWT across various decomposition levels, ranging from 1 to 5, with different mother wavelets. The electroencephalogram (EEG) signals are processed using DWT, which decomposes them into multiple frequency bands, yielding approximation and detail coefficients at each level. Statistical features are then extracted from these coefficients. The computed feature vector is then fed into a classifier to distinguish between SZ and healthy controls (HC). Our approach achieves the highest classification accuracy of 100% on a publicly available dataset, outperforming existing state-of-the-art methods.
Collapse
Affiliation(s)
- E. Sathiya
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - T. D. Rao
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - T. Sunil Kumar
- Department of Electrical Engineering, Mathematics and Science, University of Gävle, Gävle, Sweden
| |
Collapse
|
6
|
Ranjan R, Sahana BC. Multiresolution feature fusion for smart diagnosis of schizophrenia in adolescents using EEG signals. Cogn Neurodyn 2024; 18:2779-2807. [PMID: 39555262 PMCID: PMC11564624 DOI: 10.1007/s11571-024-10120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 11/19/2024] Open
Abstract
Numerous studies on early detection of schizophrenia (SZ) have utilized all available channels or employed set of a few time domain or frequency domain features, while a limited number of features may not be sufficient enough to perform diagnosis efficiently. To encounter these problems, an automated diagnosis model is proposed for the efficient diagnosis of schizophrenia symptomatic adolescent subjects from electroencephalogram (EEG) signals via machine intelligence. A publicly accessible EEG dataset featuring 16-channels EEG obtained from 84 adolescents (45 SZ symptomatic and 39 healthy control) is used to demonstrate the work. Initially, the signals are decomposed into sub-bands using two multi-resolution signal analysis methods: Empirical Wavelet Transform and Empirical mode decomposition. 75 unique features from each sub-bands are extracted and the few selective prominent features are applied to machine learning classifiers for optimal sub-band selection. Subsequently, a hybrid model is proposed, combining convolutional neural network (CNN) and ensemble bagged tree, incorporating both deep learning and handcrafted features to perform SZ diagnosis. This innovative model achieved superior classification performance compared to existing methods, offering a promising approach for SZ diagnosis. Furthermore, the study explores the impact of different brain regions and combined regional data in SZ diagnosis comprehensively. Hence, this computer-assisted decision-making model minimizes the limitations of prior studies by providing a more robust and efficient diagnostic system for schizophrenia.
Collapse
Affiliation(s)
- Rakesh Ranjan
- Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna-, 800005 India
| | - Bikash Chandra Sahana
- Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna-, 800005 India
| |
Collapse
|
7
|
Bagherzadeh S, Shalbaf A. EEG-based schizophrenia detection using fusion of effective connectivity maps and convolutional neural networks with transfer learning. Cogn Neurodyn 2024; 18:2767-2778. [PMID: 39555286 PMCID: PMC11564470 DOI: 10.1007/s11571-024-10121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 11/19/2024] Open
Abstract
Schizophrenia (SZ) is a serious mental disorder that can mainly be distinguished by symptoms including delusions and hallucinations. This mental disorder makes difficult conditions for the person and her/his relatives. Electroencephalogram (EEG) signal is a sophisticated neuroimaging technique that helps neurologists to diagnose this mental disorder. Estimating and evaluating brain effective connectivity between electrode pairs is an appropriate way of diagnosing brain states in neuroscience studies. In this study, we construct a novel image from multi-channels of EEG based on the fusion of three effective connectivity, partial directed coherence (PDC), and direct directed transfer function (dDTF) and transfer entropy (TE) at three consecutive time windows. Then, this image was used as input of five well-known convolutional neural networks (CNNs) through transfer learning (TL) to learn patterns related to SZ patients to diagnose this disorder from normal participants from two public databases. Also, the majority voting method was used to improve these results based on ensemble results of the five CNNs, i.e., ResNet-50, Inception-v3, DenseNet-201, EfficientNetB0, and NasNet-Mobile. The highest average accuracy, specificity and sensitivity to diagnose SZ patients from healthy participants were obtained using EfficientNetB0 through the Leave-One-Subject-out (LOSO) Cross-Validation criterion equal to 96.67%, 96.23%, 96.82%, 95.15%, 94.42% and 96.28% for the first and second databases, respectively. Also, as we suggested, the ensemble approach of EfficientNetB0, ResNet-50 and NasNet-Mobile increased the accuracy by approximately 3%. Our results show the effectiveness of providing fused images from multichannel EEG signals to the ensemble of CNNs through TL to diagnose SZ than state-of-the-art studies.
Collapse
Affiliation(s)
- Sara Bagherzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Dimitriadis SI. ℛSCZ: A Riemannian schizophrenia diagnosis framework based on the multiplexity of EEG-based dynamic functional connectivity patterns. Comput Biol Med 2024; 180:108862. [PMID: 39068901 DOI: 10.1016/j.compbiomed.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Abnormal electrophysiological (EEG) activity has been largely reported in schizophrenia (SCZ). In the last decade, research has focused to the automatic diagnosis of SCZ via the investigation of an EEG aberrant activity and connectivity linked to this mental disorder. These studies followed various preprocessing steps of EEG activity focusing on frequency-dependent functional connectivity brain network (FCBN) construction disregarding the topological dependency among edges. FCBN belongs to a family of symmetric positive definite (SPD) matrices forming the Riemannian manifold. Due to its unique geometric properties, the whole analysis of FCBN can be performed on the Riemannian geometry of the SPD space. The advantage of the analysis of FCBN on the SPD space is that it takes into account all the pairwise interdependencies as a whole. However, only a few studies have adopted a FCBN analysis on the SPD manifold, while no study exists on the analysis of dynamic FCBN (dFCBN) tailored to SCZ. In the present study, I analyzed two open EEG-SCZ datasets under a Riemannian geometry of SPD matrices for the dFCBN analysis proposing also a multiplexity index that quantifies the associations of multi-frequency brainwave patterns. I adopted a machine learning procedure employing a leave-one-subject-out cross-validation (LOSO-CV) using snapshots of dFCBN from (N-1) subjects to train a battery of classifiers. Each classifier operated in the inter-subject dFCBN distances of sample covariance matrices (SCMs) following a rhythm-dependent decision and a multiplex-dependent one. The proposed ℛSCZ decoder supported both the Riemannian geometry of SPD and the multiplexity index DC reaching an absolute accuracy (100 %) in both datasets in the virtual default mode network (DMN) source space.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall D'Hebron 171, 08035, Barcelona, Spain; Institut de Neurociencies, University of Barcelona, Municipality of Horta-Guinardó, 08035, Barcelona, Spain; Integrative Neuroimaging Lab, Thessaloniki, 55133, Makedonia, Greece; Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| |
Collapse
|
9
|
Rahul J, Sharma D, Sharma LD, Nanda U, Sarkar AK. A systematic review of EEG based automated schizophrenia classification through machine learning and deep learning. Front Hum Neurosci 2024; 18:1347082. [PMID: 38419961 PMCID: PMC10899326 DOI: 10.3389/fnhum.2024.1347082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
The electroencephalogram (EEG) serves as an essential tool in exploring brain activity and holds particular importance in the field of mental health research. This review paper examines the application of artificial intelligence (AI), encompassing machine learning (ML) and deep learning (DL), for classifying schizophrenia (SCZ) through EEG. It includes a thorough literature review that addresses the difficulties, methodologies, and discoveries in this field. ML approaches utilize conventional models like Support Vector Machines and Decision Trees, which are interpretable and effective with smaller data sets. In contrast, DL techniques, which use neural networks such as convolutional neural networks (CNNs) and long short-term memory networks (LSTMs), are more adaptable to intricate EEG patterns but require significant data and computational power. Both ML and DL face challenges concerning data quality and ethical issues. This paper underscores the importance of integrating various techniques to enhance schizophrenia diagnosis and highlights AI's potential role in this process. It also acknowledges the necessity for collaborative and ethically informed approaches in the automated classification of SCZ using AI.
Collapse
Affiliation(s)
- Jagdeep Rahul
- Department of Electronics and Communication Engineering, Rajiv Gandhi University, Arunachal Pradesh, India
| | - Diksha Sharma
- Department of Electronics and Communication, Indian Institute of Information Technology, Sri City, India
| | - Lakhan Dev Sharma
- School of Electronics Engineering, VIT-AP University, Amrawati, India
| | - Umakanta Nanda
- School of Electronics Engineering, VIT-AP University, Amrawati, India
| | - Achintya Kumar Sarkar
- Department of Electronics and Communication, Indian Institute of Information Technology, Sri City, India
| |
Collapse
|
10
|
Kang J, Mao W, Wu J, Huang X, Casanova MF, Sokhadze EM, Li X, Geng X. Development of EEG connectivity from preschool to school-age children. Front Neurosci 2024; 17:1277786. [PMID: 38274502 PMCID: PMC10808652 DOI: 10.3389/fnins.2023.1277786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Many studies have collected normative developmental EEG data to better understand brain function in early life and associated changes during both aging and pathology. Higher cognitive functions of the brain do not normally stem from the workings of a single brain region that works but, rather, on the interaction between different brain regions. In this regard studying the connectivity between brain regions is of great importance towards understanding higher cognitive functions and its underlying mechanisms. Methods In this study, EEG data of children (N = 253; 3-10 years old; 113 females, 140 males) from pre-school to schoolage was collected, and the weighted phase delay index and directed transfer function method was used to find the electrophysiological indicators of both functional connectivity and effective connectivity. A general linear model was built between the indicators and age, and the change trend of electrophysiological indicators analyzed for age. Results The results showed an age trend for the functional and effective connectivity of the brain of children. Discussion The results are of importance in understanding normative brain development and in defining those conditions that deviate from typical growth trajectories.
Collapse
Affiliation(s)
- Jiannan Kang
- Child Rehabilitation Division, Ningbo Rehabilitation Hospital, Ningbo, China
| | - Wenqin Mao
- Child Rehabilitation Division, Ningbo Rehabilitation Hospital, Ningbo, China
| | - Juanmei Wu
- Child Rehabilitation Division, Ningbo Rehabilitation Hospital, Ningbo, China
| | - Xinping Huang
- Child Rehabilitation Division, Ningbo Rehabilitation Hospital, Ningbo, China
| | - Manuel F. Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Prisma Health System, Greenville, SC, United States
| | - Estate M. Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Prisma Health System, Greenville, SC, United States
- Duke University, Durham, NC, United States
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xinling Geng
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Gengeç Benli Ş. Classification of First-Episode Psychosis with EEG Signals: ciSSA and Machine Learning Approach. Biomedicines 2023; 11:3223. [PMID: 38137444 PMCID: PMC10741114 DOI: 10.3390/biomedicines11123223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
First-episode psychosis (FEP) typically marks the onset of severe psychiatric disorders and represents a critical period in the field of mental health. The early diagnosis of this condition is essential for timely intervention and improved clinical outcomes. In this study, the classification of FEP was investigated using the analysis of electroencephalography (EEG) signals and circulant spectrum analysis (ciSSA) sub-band signals. FEP poses a significant diagnostic challenge in the realm of mental health, and it is aimed at introducing a novel and effective approach for early diagnosis. To achieve this, the LASSO method was utilized to select the most significant features derived from entropy, frequency, and statistical-based characteristics obtained from ciSSA sub-band signals, as well as their hybrid combinations. Subsequently, a high-performance classification model has been developed using machine learning techniques, including ensemble, support vector machine (SVM), and artificial neural network (ANN) methods. The results of this study demonstrated that the hybrid features extracted from EEG signals' ciSSA sub-bands, in combination with the SVM method, achieved a high level of performance, with an area under curve (AUC) of 0.9893, an accuracy of 96.23%, a sensitivity of 0.966, a specificity of 0.956, a precision of 0.9667, and an F1 score of 0.9666. This has revealed the effectiveness of the ciSSA-based method for classifying FEP from EEG signals.
Collapse
Affiliation(s)
- Şerife Gengeç Benli
- Department of Biomedical Engineering, Faculty of Engineering, Erciyes University, Kayseri 38280, Turkey
| |
Collapse
|
12
|
Tasci G, Gun MV, Keles T, Tasci B, Barua PD, Tasci I, Dogan S, Baygin M, Palmer EE, Tuncer T, Ooi CP, Acharya UR. QLBP: Dynamic patterns-based feature extraction functions for automatic detection of mental health and cognitive conditions using EEG signals. CHAOS, SOLITONS & FRACTALS 2023; 172:113472. [DOI: 10.1016/j.chaos.2023.113472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
13
|
Siuly S, Guo Y, Alcin OF, Li Y, Wen P, Wang H. Exploring deep residual network based features for automatic schizophrenia detection from EEG. Phys Eng Sci Med 2023; 46:561-574. [PMID: 36947384 DOI: 10.1007/s13246-023-01225-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023]
Abstract
Schizophrenia is a severe mental illness which can cause lifelong disability. Most recent studies on the Electroencephalogram (EEG)-based diagnosis of schizophrenia rely on bespoke/hand-crafted feature extraction techniques. Traditional manual feature extraction methods are time-consuming, imprecise, and have a limited ability to balance accuracy and efficiency. Addressing this issue, this study introduces a deep residual network (deep ResNet) based feature extraction design that can automatically extract representative features from EEG signal data for identifying schizophrenia. This proposed method consists of three stages: signal pre-processing by average filtering method, extraction of hidden patterns of EEG signals by deep ResNet, and classification of schizophrenia by softmax layer. To assess the performance of the obtained deep features, ResNet softmax classifier and also several machine learning (ML) techniques are applied on the same feature set. The experimental results for a Kaggle schizophrenia EEG dataset show that the deep features with support vector machine classifier could achieve the highest performances (99.23% accuracy) compared to the ResNet classifier. Furthermore, the proposed model performs better than the existing approaches. The findings suggest that our proposed strategy has capability to discover important biomarkers for automatic diagnosis of schizophrenia from EEG, which will aid in the development of a computer assisted diagnostic system by specialists.
Collapse
Affiliation(s)
- Siuly Siuly
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia.
- Centre for Health Research, University of Southern Queensland, Toowoomba, Australia.
| | - Yanhui Guo
- Department of Computer Science, University of Illinois at Springfield, Springfield, IL, 62703, USA
| | - Omer Faruk Alcin
- Department of Electrical-Electronics Engineering, Faculty of Engineering and Natural Sciences, Malatya Turgut Ozal University, Malatya, Turkey
| | - Yan Li
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia
| | - Peng Wen
- School of Engineering, University of Southern Queensland, Toowoomba, Australia
| | - Hua Wang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia
| |
Collapse
|
14
|
Khare SK, Acharya UR. An explainable and interpretable model for attention deficit hyperactivity disorder in children using EEG signals. Comput Biol Med 2023; 155:106676. [PMID: 36827785 DOI: 10.1016/j.compbiomed.2023.106676] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects a person's sleep, mood, anxiety, and learning. Early diagnosis and timely medication can help individuals with ADHD perform daily tasks without difficulty. Electroencephalogram (EEG) signals can help neurologists to detect ADHD by examining the changes occurring in it. The EEG signals are complex, non-linear, and non-stationary. It is difficult to find the subtle differences between ADHD and healthy control EEG signals visually. Also, making decisions from existing machine learning (ML) models do not guarantee similar performance (unreliable). METHOD The paper explores a combination of variational mode decomposition (VMD), and Hilbert transform (HT) called VMD-HT to extract hidden information from EEG signals. Forty-one statistical parameters extracted from the absolute value of analytical mode functions (AMF) have been classified using the explainable boosted machine (EBM) model. The interpretability of the model is tested using statistical analysis and performance measurement. The importance of the features, channels and brain regions has been identified using the glass-box and black-box approach. The model's local and global explainability has been visualized using Local Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), Partial Dependence Plot (PDP), and Morris sensitivity. To the best of our knowledge, this is the first work that explores the explainability of the model prediction in ADHD detection, particularly for children. RESULTS Our results show that the explainable model has provided an accuracy of 99.81%, a sensitivity of 99.78%, 99.84% specificity, an F-1 measure of 99.83%, the precision of 99.87%, a false detection rate of 0.13%, and Mathew's correlation coefficient, negative predicted value, and critical success index of 99.61%, 99.73%, and 99.66%, respectively in detecting the ADHD automatically with ten-fold cross-validation. The model has provided an area under the curve of 100% while the detection rate of 99.87% and 99.73% has been obtained for ADHD and HC, respectively. CONCLUSIONS The model show that the interpretability and explainability of frontal region is highest compared to pre-frontal, central, parietal, occipital, and temporal regions. Our findings has provided important insight into the developed model which is highly reliable, robust, interpretable, and explainable for the clinicians to detect ADHD in children. Early and rapid ADHD diagnosis using robust explainable technologies may reduce the cost of treatment and lessen the number of patients undergoing lengthy diagnosis procedures.
Collapse
Affiliation(s)
- Smith K Khare
- Electrical and Computer Engineering Department, Aarhus University, 8200, Aarhus, Denmark.
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, Australia; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taiwan; Kumamoto University, Japan; University of Malaya, Malaysia
| |
Collapse
|
15
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
16
|
Agarwal M, Singhal A. Fusion of pattern-based and statistical features for Schizophrenia detection from EEG signals. Med Eng Phys 2023; 112:103949. [PMID: 36842772 DOI: 10.1016/j.medengphy.2023.103949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Schizophrenia (SZ) is a chronic disorder affecting the functioning of the brain. It can lead to irrational behaviour amongst the patients suffering from this disease. A low-cost diagnostic needs to be developed for SZ so that timely treatment can be provided to the patients. In this work, we propose an accurate and easy-to-implement system to detect SZ using electroencephalogram (EEG) signals. The signal is divided into sub-band components by a Fourier-based technique that can be implemented in real-time using fast Fourier transform. Thereafter, statistical features are computed from these components. Further, look ahead pattern (LAP) is developed as a feature to capture local variations in the EEG signal. The fusion of these two distinct schemes enables a thorough examination of EEG signals. Kruskal-Wallis test is utilized for the selection of significant features. Various machine learning classifiers are employed and the proposed framework achieves 98.62% and 99.24% accuracy in identifying SZ cases, considering two distinct datasets, using boosted trees classifier. This method provides a promising candidate for widespread deployment in efficient real-time systems for SZ detection.
Collapse
Affiliation(s)
- Megha Agarwal
- Department of Electronics & Communication Engineering, Jaypee Institute of Information Technology, Noida, India.
| | - Amit Singhal
- Department of Electronics & Communication Engineering, Netaji Subhas University of Technology, Delhi, India.
| |
Collapse
|
17
|
Schizophrenia Diagnosis by Weighting the Entropy Measures of the Selected EEG Channel. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
18
|
Parija S, Sahani M, Bisoi R, Dash PK. Autoencoder-based improved deep learning approach for schizophrenic EEG signal classification. Pattern Anal Appl 2022. [DOI: 10.1007/s10044-022-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Siuly S, Li Y, Wen P, Alcin OF. SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1992596. [PMID: 36120676 PMCID: PMC9477585 DOI: 10.1155/2022/1992596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Schizophrenia (SZ) is a severe and prolonged disorder of the human brain where people interpret reality in an abnormal way. Traditional methods of SZ detection are based on handcrafted feature extraction methods (manual process), which are tedious and unsophisticated, and also limited in their ability to balance efficiency and accuracy. To solve this issue, this study designed a deep learning-based feature extraction scheme involving the GoogLeNet model called "SchizoGoogLeNet" that can efficiently and automatically distinguish schizophrenic patients from healthy control (HC) subjects using electroencephalogram (EEG) signals with improved performance. The proposed framework involves multiple stages of EEG data processing. First, this study employs the average filtering method to remove noise and artifacts from the raw EEG signals to improve the signal-to-noise ratio. After that, a GoogLeNet model is designed to discover significant hidden features from denoised signals to identify schizophrenic patients from HC subjects. Finally, the obtained deep feature set is evaluated by the GoogleNet classifier and also some renowned machine learning classifiers to find a sustainable classification method for the obtained deep feature set. Experimental results show that the proposed deep feature extraction model with a support vector machine performs the best, producing a 99.02% correct classification rate for SZ, with an overall accuracy of 98.84%. Furthermore, our proposed model outperforms other existing methods. The proposed design is able to accurately discriminate SZ from HC, and it will be useful for developing a diagnostic tool for SZ detection.
Collapse
Affiliation(s)
- Siuly Siuly
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia
| | - Yan Li
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia
| | - Peng Wen
- School of Engineering, University of Southern Queensland, Toowoomba, Australia
| | - Omer Faruk Alcin
- Department of Electrical and Electronics Engineering, Turgut Ozal University, Malatya, Turkey
| |
Collapse
|
20
|
Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz JM, Khozeimeh F, Zhang YD, Nahavandi S, Acharya UR. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 146:105554. [DOI: 10.1016/j.compbiomed.2022.105554] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
|