1
|
Zhuang X, Yi Z, Wang Y, Chen Y, Yu S. Artificial multi-verse optimisation for predicting the effect of ideological and political theory course. Heliyon 2024; 10:e29830. [PMID: 38707436 PMCID: PMC11066315 DOI: 10.1016/j.heliyon.2024.e29830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Enhancing teaching sufficiency is crucial because low teaching efficiency has always been a widespread issue in ideological and political theory course. Evaluating data on the course is obtained from a freshmen class of 2022 using questionnaires. The data is organised and condensed for mining and analysis. Subsequently, an intelligent artificial multi-verse optimizer (AMVO) method s developed to predict the effect of ideological and political theory course. The proposed AMVO approach was tested against various cutting-edge algorithms to demonstrate its effectiveness and stability on the benchmark functions. The experimental results indicated that AMVO ranked first among the 23 test functions. Furthermore, the binary AMVO enhanced k-nearest neighbour classifier had excellent performance in the art ideological and political theory course in terms of error rate, accuracy, specificity and sensitivity. This model can predict the overall evaluation attitude of freshmen towards the course based on the dataset. In addition, we can further analyse the potential correlations between factors that enhance the intellectual and political content of the course. This model can further refine the evaluation of ideological and political courses by teachers and students in our school, thereby achieving the fundamental goal of moral cultivation.
Collapse
Affiliation(s)
| | - Zhaodi Yi
- College of Marxism, Wenzhou University, Wenzhou, 325035, China
| | - Yuqing Wang
- College of law, Wenzhou University, Wenzhou, 325035, China
| | - Yi Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
| | - Sudan Yu
- Department of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou, 325035, China
| |
Collapse
|
2
|
Li Y, Zhao D, Ma C, Escorcia-Gutierrez J, Aljehane NO, Ye X. CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images. Comput Biol Med 2024; 169:107838. [PMID: 38171259 DOI: 10.1016/j.compbiomed.2023.107838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
To improve the detection of COVID-19, this paper researches and proposes an effective swarm intelligence algorithm-driven multi-threshold image segmentation (MTIS) method. First, this paper proposes a novel RIME structure integrating the Co-adaptive hunting and dispersed foraging strategies, called CDRIME. Specifically, the Co-adaptive hunting strategy works in coordination with the basic search rules of RIME at the individual level, which not only facilitates the algorithm to explore the global optimal solution but also enriches the population diversity to a certain extent. The dispersed foraging strategy further enriches the population diversity to help the algorithm break the limitation of local search and thus obtain better convergence. Then, on this basis, a new multi-threshold image segmentation method is proposed by combining the 2D non-local histogram with 2D Kapur entropy, called CDRIME-MTIS. Finally, the results of experiments based on IEEE CEC2017, IEEE CEC2019, and IEEE CEC2022 demonstrate that CDRIME has superior performance than some other basic, advanced, and state-of-the-art algorithms in terms of global search, convergence performance, and escape from local optimality. Meanwhile, the segmentation experiments on COVID-19 X-ray images demonstrate that CDRIME is more advantageous than RIME and other peers in terms of segmentation effect and adaptability to different threshold levels. In conclusion, the proposed CDRIME significantly enhances the global optimization performance and image segmentation of RIME and has great potential to improve COVID-19 diagnosis.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Chao Ma
- School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
| | - José Escorcia-Gutierrez
- Department of Computational Science and Electronics, Universidad de la Costa, CUC, Barranquilla, 080002, Colombia.
| | - Nojood O Aljehane
- Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
| | - Xia Ye
- School of the 1st Clinical Medical Sciences (School of Information and Engineering), Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Wei Y, Othman Z, Daud KM, Luo Q, Zhou Y. Advances in Slime Mould Algorithm: A Comprehensive Survey. Biomimetics (Basel) 2024; 9:31. [PMID: 38248605 PMCID: PMC10813181 DOI: 10.3390/biomimetics9010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 01/23/2024] Open
Abstract
The slime mould algorithm (SMA) is a new swarm intelligence algorithm inspired by the oscillatory behavior of slime moulds during foraging. Numerous researchers have widely applied the SMA and its variants in various domains in the field and proved its value by conducting various literatures. In this paper, a comprehensive review of the SMA is introduced, which is based on 130 articles obtained from Google Scholar between 2022 and 2023. In this study, firstly, the SMA theory is described. Secondly, the improved SMA variants are provided and categorized according to the approach used to apply them. Finally, we also discuss the main applications domains of the SMA, such as engineering optimization, energy optimization, machine learning, network, scheduling optimization, and image segmentation. This review presents some research suggestions for researchers interested in this algorithm, such as conducting additional research on multi-objective and discrete SMAs and extending this to neural networks and extreme learning machining.
Collapse
Affiliation(s)
- Yuanfei Wei
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Xiangsihu College, Guangxi Minzu University, Nanning 530225, China
| | - Zalinda Othman
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kauthar Mohd Daud
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Qifang Luo
- College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
| | - Yongquan Zhou
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Xiangsihu College, Guangxi Minzu University, Nanning 530225, China
- College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
4
|
Guo H, Liu H, Zhu H, Li M, Yu H, Zhu Y, Chen X, Xu Y, Gao L, Zhang Q, Shentu Y. Exploring a novel HE image segmentation technique for glioblastoma: A hybrid slime mould and differential evolution approach. Comput Biol Med 2024; 168:107653. [PMID: 37984200 DOI: 10.1016/j.compbiomed.2023.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Glioblastoma is a primary brain tumor with high incidence and mortality rates, posing a significant threat to human health. It is crucial to provide necessary diagnostic assistance for its management. Among them, Multi-threshold Image Segmentation (MIS) is considered the most efficient and intuitive method in image processing. In recent years, many scholars have combined different metaheuristic algorithms with MIS to improve the quality of Image Segmentation (IS). Slime Mould Algorithm (SMA) is a metaheuristic approach inspired by the foraging behavior of slime mould populations in nature. In this investigation, we introduce a hybridized variant named BDSMA, aimed at overcoming the inherent limitations of the original algorithm. These limitations encompass inadequate exploitation capacity and a tendency to converge prematurely towards local optima when dealing with complex multidimensional problems. To bolster the algorithm's optimization prowess, we integrate the original algorithm with a robust exploitative operator called Differential Evolution (DE). Additionally, we introduce a strategy for handling solutions that surpass boundaries. The incorporation of an advanced cooperative mixing model accelerates the convergence of BDSMA, refining its precision and preventing it from becoming trapped in local optima. To substantiate the effectiveness of our proposed approach, we conduct a comprehensive series of comparative experiments involving 30 benchmark functions. The results of these experiments demonstrate the superiority of our method in terms of both convergence speed and precision. Moreover, within this study, we propose a MIS technique. This technique is subsequently employed to conduct experiments on IS at both low and high threshold levels. The effectiveness of the BDSMA-based MIS technique is further showcased through its successful application to the medical image of brain glioblastoma. The evaluation of these experimental outcomes, utilizing image quality metrics, conclusively underscores the exceptional efficacy of the algorithm we have put forth.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Hanbo Liu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Hong Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Mingyang Li
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yun Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiaoxiao Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yujia Xu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Lianxing Gao
- College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Qiongying Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Zhang Y, Liu Y, Zhao Y, Wang X. Implementation of Chaotic Reverse Slime Mould Algorithm Based on the Dandelion Optimizer. Biomimetics (Basel) 2023; 8:482. [PMID: 37887613 PMCID: PMC10603873 DOI: 10.3390/biomimetics8060482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
This paper presents a hybrid algorithm based on the slime mould algorithm (SMA) and the mixed dandelion optimizer. The hybrid algorithm improves the convergence speed and prevents the algorithm from falling into the local optimal. (1) The Bernoulli chaotic mapping is added in the initialization phase to enrich the population diversity. (2) The Brownian motion and Lévy flight strategy are added to further enhance the global search ability and local exploitation performance of the slime mould. (3) The specular reflection learning is added in the late iteration to improve the population search ability and avoid falling into local optimality. The experimental results show that the convergence speed and precision of the improved algorithm are improved in the standard test functions. At last, this paper optimizes the parameters of the Extreme Learning Machine (ELM) model with the improved method and applies it to the power load forecasting problem. The effectiveness of the improved method in solving practical engineering problems is further verified.
Collapse
Affiliation(s)
- Yi Zhang
- College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130119, China; (Y.L.); (Y.Z.); (X.W.)
| | | | | | | |
Collapse
|
6
|
Zheng K, Wu J, Yuan Y, Liu L. From single to multiple: Generalized detection of Covid-19 under limited classes samples. Comput Biol Med 2023; 164:107298. [PMID: 37573722 DOI: 10.1016/j.compbiomed.2023.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
Amid the unfolding Covid-19 pandemic, there is a critical need for rapid and accurate diagnostic methods. In this context, the field of deep learning-based medical image diagnosis has witnessed a swift evolution. However, the prevailing methodologies often rely on large amounts of labeled data and require comprehensive medical knowledge. Both of these prerequisites pose significant challenges in real clinical settings, given the high cost of data labeling and the complexities of disease representations. Addressing this gap, we propose a novel problem setting, the Open-Set Single-Domain Generalization for Medical Image Diagnosis (OSSDG-MID). In OSSDG-MID, our aim is to train a model exclusively on a single source domain, so it can classify samples from the target domain accurately, designating them as 'unknown' if they don't belong to the source domain sample category space. Our innovative solution, the Multiple Cross-Matching method (MCM), enhances the identification of these 'unknown' categories by generating auxiliary samples that fall outside the category space of the source domain. Experimental evaluations on two diverse cross-domain image classification tasks demonstrate that our approach outperforms existing methodologies in both single-domain generalization and open-set image classification.
Collapse
Affiliation(s)
- Kaihui Zheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Jianhua Wu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Youjun Yuan
- Department of Emergency, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
7
|
Chen Z, Xuan P, Heidari AA, Liu L, Wu C, Chen H, Escorcia-Gutierrez J, Mansour RF. An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection. iScience 2023; 26:106679. [PMID: 37216098 PMCID: PMC10193239 DOI: 10.1016/j.isci.2023.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection.
Collapse
Affiliation(s)
- Zhiqing Chen
- School of Intelligent Manufacturing, Wenzhou Polytechnic, Wenzhou 325035, China
| | - Ping Xuan
- Department of Computer Science, School of Engineering, Shantou University, Shantou 515063, China
| | - Ali Asghar Heidari
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chengwen Wu
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - José Escorcia-Gutierrez
- Department of Computational Science and Electronics, Universidad de la Costa, CUC, Barranquilla 080002, Colombia
| | - Romany F. Mansour
- Department of Mathematics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt
| |
Collapse
|
8
|
Ehsaeyan E. An efficient image segmentation method based on expectation maximization and Salp swarm algorithm. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-31. [PMID: 37362643 PMCID: PMC10061417 DOI: 10.1007/s11042-023-15149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/14/2022] [Accepted: 03/13/2023] [Indexed: 06/28/2023]
Abstract
Multilevel image thresholding using Expectation Maximization (EM) is an efficient method for image segmentation. However, it has two weaknesses: 1) EM is a greedy algorithm and cannot jump out of local optima. 2) it cannot guarantee the number of required classes while estimating the histogram by Gaussian Mixture Models (GMM). in this paper, to overcome these shortages, a novel thresholding approach by combining EM and Salp Swarm Algorithm (SSA) is developed. SSA suggests potential points to the EM algorithm to fly to a better position. Moreover, a new mechanism is considered to maintain the number of desired clusters. Twenty-four medical test images are selected and examined by standard metrics such as PSNR and FSIM. The proposed method is compared with the traditional EM algorithm, and an average improvement of 5.27% in PSNR values and 2.01% in FSIM values were recorded. Also, the proposed approach is compared with four existing segmentation techniques by using CT scan images that Qatar University has collected. Experimental results depict that the proposed method obtains the first rank in terms of PSNR and the second rank in terms of FSIM. It has been observed that the proposed technique performs better performance in the segmentation result compared to other considered state-of-the-art methods.
Collapse
Affiliation(s)
- Ehsan Ehsaeyan
- Electrical Engineering Department, Sirjan University of Technology, Sirjan, Iran
| |
Collapse
|
9
|
Gharehchopogh FS, Ucan A, Ibrikci T, Arasteh B, Isik G. Slime Mould Algorithm: A Comprehensive Survey of Its Variants and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:2683-2723. [PMID: 36685136 PMCID: PMC9838547 DOI: 10.1007/s11831-023-09883-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Meta-heuristic algorithms have a high position among academic researchers in various fields, such as science and engineering, in solving optimization problems. These algorithms can provide the most optimal solutions for optimization problems. This paper investigates a new meta-heuristic algorithm called Slime Mould algorithm (SMA) from different optimization aspects. The SMA algorithm was invented due to the fluctuating behavior of slime mold in nature. It has several new features with a unique mathematical model that uses adaptive weights to simulate the biological wave. It provides an optimal pathway for connecting food with high exploration and exploitation ability. As of 2020, many types of research based on SMA have been published in various scientific databases, including IEEE, Elsevier, Springer, Wiley, Tandfonline, MDPI, etc. In this paper, based on SMA, four areas of hybridization, progress, changes, and optimization are covered. The rate of using SMA in the mentioned areas is 15, 36, 7, and 42%, respectively. According to the findings, it can be claimed that SMA has been repeatedly used in solving optimization problems. As a result, it is anticipated that this paper will be beneficial for engineers, professionals, and academic scientists.
Collapse
Affiliation(s)
| | - Alaettin Ucan
- Department of Computer Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Turgay Ibrikci
- Department of Software Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Bahman Arasteh
- Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul, Turkey
| | - Gultekin Isik
- Department of Computer Engineering, Igdir University, Igdir, Turkey
| |
Collapse
|
10
|
Chen Y, Zheng C, Zhou T, Feng L, Liu L, Zeng Q, Wang G. A deep residual attention-based U-Net with a biplane joint method for liver segmentation from CT scans. Comput Biol Med 2023; 152:106421. [PMID: 36527780 DOI: 10.1016/j.compbiomed.2022.106421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Liver tumours are diseases with high morbidity and high deterioration probabilities, and accurate liver area segmentation from computed tomography (CT) scans is a prerequisite for quick tumour diagnosis. While 2D network segmentation methods can perform segmentation with lower device performance requirements, they often discard the rich 3D spatial information contained in CT scans, limiting their segmentation accuracy. Hence, a deep residual attention-based U-shaped network (DRAUNet) with a biplane joint method for liver segmentation is proposed in this paper, where the biplane joint method introduces coronal CT slices to assist the transverse slices with segmentation, incorporating more 3D spatial information into the segmentation results to improve the segmentation performance of the network. Additionally, a novel deep residual block (DR block) and dual-effect attention module (DAM) are introduced in DRAUNet, where the DR block has deeper layers and two shortcut paths. The DAM efficiently combines the correlations of feature channels and the spatial locations of feature maps. The DRAUNet with the biplane joint method is tested on three datasets, Liver Tumour Segmentation (LiTS), 3D Image Reconstruction for Comparison of Algorithms Database (3DIRCADb), and Segmentation of the Liver Competition 2007 (Sliver07), and it achieves 97.3%, 97.4%, and 96.9% Dice similarity coefficients (DSCs) for liver segmentation, respectively, outperforming most state-of-the-art networks; this strongly demonstrates the segmentation performance of DRAUNet and the ability of the biplane joint method to obtain 3D spatial information from 3D images.
Collapse
Affiliation(s)
- Ying Chen
- School of Software, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Cheng Zheng
- School of Software, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Taohui Zhou
- School of Software, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Longfeng Feng
- School of Software, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lan Liu
- Department of Radiology, Jiangxi Cancer Hospital, Nanchang, 330029, PR China.
| | - Qiao Zeng
- Department of Radiology, Jiangxi Cancer Hospital, Nanchang, 330029, PR China
| | - Guoqing Wang
- Zhejiang Suosi Technology Co. Ltd, Wenzhou, 325000, PR China.
| |
Collapse
|
11
|
Li J, Liu K, Hu Y, Zhang H, Heidari AA, Chen H, Zhang W, Algarni AD, Elmannai H. Eres-UNet++: Liver CT image segmentation based on high-efficiency channel attention and Res-UNet+. Comput Biol Med 2022; 158:106501. [PMID: 36635120 DOI: 10.1016/j.compbiomed.2022.106501] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 01/11/2023]
Abstract
Computerized tomography (CT) is of great significance for the localization and diagnosis of liver cancer. Many scholars have recently applied deep learning methods to segment CT images of liver and liver tumors. Unlike natural images, medical image segmentation is usually more challenging due to its nature. Aiming at the problem of blurry boundaries and complex gradients of liver tumor images, a deep supervision network based on the combination of high-efficiency channel attention and Res-UNet++ (ECA residual UNet++) is proposed for liver CT image segmentation, enabling fully automated end-to-end segmentation of the network. In this paper, the UNet++ structure is selected as the baseline. The residual block feature encoder based on context awareness enhances the feature extraction ability and solves the problem of deep network degradation. The introduction of an efficient attention module combines the depth of the feature map with spatial information to alleviate the uneven sample distribution impact; Use DiceLoss to replace the cross-entropy loss function to optimize network parameters. The liver and liver tumor segmentation accuracy on the LITS dataset was 95.8% and 89.3%, respectively. The results show that compared with other algorithms, the method proposed in this paper achieves a good segmentation performance, which has specific reference significance for computer-assisted diagnosis and treatment to attain fine segmentation of liver and liver tumors.
Collapse
Affiliation(s)
- Jian Li
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Kongyu Liu
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Yating Hu
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongchen Zhang
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Ali Asghar Heidari
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.
| | - Huiling Chen
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.
| | - Weijiang Zhang
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Abeer D Algarni
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Hela Elmannai
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
12
|
Wang M, Chen L, Chen H. Multi-Strategy Learning Boosted Colony Predation Algorithm for Photovoltaic Model Parameter Identification. SENSORS (BASEL, SWITZERLAND) 2022; 22:8281. [PMID: 36365977 PMCID: PMC9658493 DOI: 10.3390/s22218281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Modeling solar systems necessitates the effective identification of unknown and variable photovoltaic parameters. To efficiently convert solar energy into electricity, these parameters must be precise. The research introduces the multi-strategy learning boosted colony predation algorithm (MLCPA) for optimizing photovoltaic parameters and boosting the efficiency of solar power conversion. In MLCPA, opposition-based learning can be used to investigate each individual's opposing position, thereby accelerating convergence and preserving population diversity. Level-based learning categorizes individuals according to their fitness levels and treats them differently, allowing for a more optimal balance between variation and intensity during optimization. On a variety of benchmark functions, the MLCPA's performance is compared to the performance of the best algorithms currently in use. On a variety of benchmark functions, the MLCPA's performance is compared to that of existing methods. MLCPA is then used to estimate the parameters of the single, double, and photovoltaic modules. Last but not least, the stability of the proposed MLCPA algorithm is evaluated on the datasheets of many manufacturers at varying temperatures and irradiance levels. Statistics have demonstrated that the MLCPA is more precise and dependable in predicting photovoltaic mode critical parameters, making it a viable tool for solar system parameter identification issues.
Collapse
Affiliation(s)
- Mingjing Wang
- School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
- The Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 211189, China
| | - Long Chen
- School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
- The Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 211189, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
13
|
Zhao X, Zhu L, Wu B. An improved mayfly algorithm based on Kapur entropy for multilevel thresholding color image segmentation. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-221161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multilevel thresholding segmentation of color images plays an important role in many fields. The pivotal procedure of this technique is determining the specific threshold of the images. In this paper, an improved mayfly algorithm (IMA)-based color image segmentation method is proposed. Tent mapping initializes the female mayfly population to increase population diversity. Lévy flight is introduced in the wedding dance iterative formulation to make IMA jump from the local optimal solution quickly. Two nonlinear coefficients were designed to speed up the convergence of the algorithm. To better verify the effectiveness, eight benchmark functions are used to test the performance of IMA. The average fitness value, standard deviation, and Wilcoxon rank sum test are used as evaluation metrics. The results show that IMA outperforms the comparison algorithm in terms of search accuracy. Furthermore, Kapur entropy is used as the fitness function of IMA to determine the segmentation threshold. 10 Berkeley images are segmented. The best fitness value, peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and other indexes are used to evaluate the effect of segmented images. The results show that the IMA segmentation method improves the segmentation accuracy of color images and obtains higher quality segmented images.
Collapse
Affiliation(s)
- Xiaohan Zhao
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
- School of Electrical Engineering, Suihua University, Suihua, Heilongjiang, China
| | - Liangkuan Zhu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Bowen Wu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Lu SY, Wang SH, Zhang YD. SAFNet: A deep spatial attention network with classifier fusion for breast cancer detection. Comput Biol Med 2022; 148:105812. [PMID: 35834967 DOI: 10.1016/j.compbiomed.2022.105812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Breast cancer is a top dangerous killer for women. An accurate early diagnosis of breast cancer is the primary step for treatment. A novel breast cancer detection model called SAFNet is proposed based on ultrasound images and deep learning. We employ a pre-trained ResNet-18 embedded with the spatial attention mechanism as the backbone model. Three randomized network models are trained for prediction in the SAFNet, which are fused by majority voting to produce more accurate results. A public ultrasound image dataset is utilized to evaluate the generalization ability of our SAFNet using 5-fold cross-validation. The simulation experiments reveal that the SAFNet can produce higher classification results compared with four existing breast cancer classification methods. Therefore, our SAFNet is an accurate tool to detect breast cancer that can be applied in clinical diagnosis.
Collapse
Affiliation(s)
- Si-Yuan Lu
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK.
| | - Shui-Hua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK.
| | - Yu-Dong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
15
|
Li L, Qian S, Li Z, Li S. Application of Improved Satin Bowerbird Optimizer in Image Segmentation. FRONTIERS IN PLANT SCIENCE 2022; 13:915811. [PMID: 35599871 PMCID: PMC9120663 DOI: 10.3389/fpls.2022.915811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Aiming at the problems of low optimization accuracy and slow convergence speed of Satin Bowerbird Optimizer (SBO), an improved Satin Bowerbird Optimizer (ISBO) based on chaotic initialization and Cauchy mutation strategy is proposed. In order to improve the value of the proposed algorithm in engineering and practical applications, we apply it to the segmentation of medical and plant images. To improve the optimization accuracy, convergence speed and pertinence of the initial population, the population is initialized by introducing the Logistic chaotic map. To avoid the algorithm falling into local optimum (prematurity), the search performance of the algorithm is improved through Cauchy mutation strategy. Based on extensive visual and quantitative data analysis, this paper conducts a comparative analysis of the ISBO with the SBO, the fuzzy Gray Wolf Optimizer (FGWO), and the Fuzzy Coyote Optimization Algorithm (FCOA). The results show that the ISBO achieves better segmentation effects in both medical and plant disease images.
Collapse
Affiliation(s)
- Linguo Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang, China
- School of Computer, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Shunqiang Qian
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang, China
| | - Zhangfei Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang, China
| | - Shujing Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
16
|
Wang Y, Huang L, Wu M, Liu S, Jiao J, Bai T. Multi-input adaptive neural network for automatic detection of cervical vertebral landmarks on X-rays. Comput Biol Med 2022; 146:105576. [DOI: 10.1016/j.compbiomed.2022.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
|
17
|
Random Replacement Crisscross Butterfly Optimization Algorithm for Standard Evaluation of Overseas Chinese Associations. ELECTRONICS 2022. [DOI: 10.3390/electronics11071080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The butterfly optimization algorithm (BOA) is a swarm intelligence optimization algorithm proposed in 2019 that simulates the foraging behavior of butterflies. Similarly, the BOA itself has certain shortcomings, such as a slow convergence speed and low solution accuracy. To cope with these problems, two strategies are introduced to improve the performance of BOA. One is the random replacement strategy, which involves replacing the position of the current solution with that of the optimal solution and is used to increase the convergence speed. The other is the crisscross search strategy, which is utilized to trade off the capability of exploration and exploitation in BOA to remove local dilemmas whenever possible. In this case, we propose a novel optimizer named the random replacement crisscross butterfly optimization algorithm (RCCBOA). In order to evaluate the performance of RCCBOA, comparative experiments are conducted with another nine advanced algorithms on the IEEE CEC2014 function test set. Furthermore, RCCBOA is combined with support vector machine (SVM) and feature selection (FS)—namely, RCCBOA-SVM-FS—to attain a standardized construction model of overseas Chinese associations. It is found that the reasonableness of bylaws; the regularity of general meetings; and the right to elect, be elected, and vote are of importance to the planning and standardization of Chinese associations. Compared with other machine learning methods, the RCCBOA-SVM-FS model has an up to 95% accuracy when dealing with the normative prediction problem of overseas Chinese associations. Therefore, the constructed model is helpful for guiding the orderly and healthy development of overseas Chinese associations.
Collapse
|