1
|
Jain R, Ganesan RA. Effective Diagnosis of Various Sleep Disorders by LEE Classifier: LightGBM-EOG-EEG. IEEE J Biomed Health Inform 2025; 29:2581-2588. [PMID: 40030833 DOI: 10.1109/jbhi.2024.3524079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
A novel method is proposed for diagnosing the sleep disorders of insomnia, narcolepsy, periodic leg movement syndrome, nocturnal frontal lobe epilepsy, rapid eye movement behavior disorder, and sleep-disordered breathing. We use the light gradient boosting decision tree model (LightGBM) for the classification of healthy controls and different sleep disorders. The proposed approach is evaluated on the publicly available CAP dataset of 108 subjects. The LightGBM classifier using only an electrooculogram (EOG) channel (L-EOG) achieves a seven-class classification accuracy of 83.3%. This performance improves to 93.3% with the LightGBM-EOG-EEG (LEE) classifier, which harnesses the combined strengths of EOG and electroencephalogram (EEG) channels. LEE classifier employs four binary classifiers that disambiguate the classes confused by the L-EOG classifier. An additional 1% improvement is achieved by applying a simple thresholding decision rule to the results of the LEE classifier, resulting in an overall accuracy of 94.4%, the best in the literature for the seven-class classification of sleep disorders.
Collapse
|
2
|
Telangore H, Sharma N, Sharma M, Acharya UR. A novel ECG-based approach for classifying psychiatric disorders: Leveraging wavelet scattering networks. Med Eng Phys 2025; 135:104275. [PMID: 39922653 DOI: 10.1016/j.medengphy.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 02/10/2025]
Abstract
Individuals with neuropsychiatric disorders experience both physical and mental difficulties, hindering their ability to live healthy lives and participate in daily activities. It is challenging to diagnose these disorders due to a lack of reliable diagnostic tests and the complex symptoms and treatments for various disorders. Generally, psychiatric disorders are identified manually by doctors using questionnaires, which may be prone to subjectivity and human errors. A few automated systems have recently been developed to identify these disorders using physiological signals, including electroencephalogram (EEG) and electrocardiogram (ECG) signals. Often, EEG signals are used to identify psychiatric disorders, but the EEG signals are nonlinear and non-stationary in nature and hence are relatively complex to analyze when compared to the ECG signals. The ECG signals in psychiatric patients are used due to the connection between the heart and brain. The proposed study is aimed at investigating the use of ECG signals for the automated identification of neuropsychiatric disorders, including bipolar disorder (BD), depression (DP), and schizophrenia (SZ). Generally, convolution neural networks (CNNs) have proven to be effective in accurately identifying psychological conditions. However, their application requires a large amount of data and technical expertise. The wavelet scattering network (WSN), a variant of CNNs, was introduced to overcome these limitations. The WSN is a network capable of accurately detecting unique patterns in the signal. The proposed research incorporated the WSN network and was conducted using a Psychiatric ECG Beat Dataset with a population of 233 subjects, of whom 198 were diagnosed with multiple psychiatric disorders, and 35 were control subjects. ECG signals from 3570 heartbeats were collected and analyzed using wavelet scattering-based feature extraction and machine learning techniques. The Fine K-Nearest Neighbor (FKNN) algorithm produced the best results with an average classification accuracy of 99.8% and a Kappa value of 0.996 using a ten-fold cross-validation. The model yielded an accuracy of 99.78%, 99.94%, 99.98%, and 100% for automated identification of BD, DP, SZ, and control subjects, respectively, with F1 scores and precision values close to 1. The proposed method could also help in the automated clinical detection of different psychiatric disorders.
Collapse
Affiliation(s)
- Hardik Telangore
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Nishant Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| |
Collapse
|
3
|
Philip Mulamoottil S, Vigneswaran T. A double-layered fully automated insomnia identification model employing synthetic data generation using MCSA and CTGAN with single-channel EEG signals. Sci Rep 2024; 14:23427. [PMID: 39379545 PMCID: PMC11461835 DOI: 10.1038/s41598-024-74706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Insomnia was diagnosed by analyzing sleep stages obtained during polysomnography (PSG) recording. The state-of-the-art insomnia detection models that used physiological signals in PSG were successful in classification. However, the sleep stages of unbalanced data in small-time intervals were fed for classification in previous studies. This can be avoided by analyzing the insomnia detection structure in different frequency bands with artificially generated data from the existing one at the preprocessing and post-processing stages. Hence, the paper proposes a double-layered augmentation model using Modified Conventional Signal Augmentation (MCSA) and a Conditional Tabular Generative Adversarial Network (CTGAN) to generate synthetic signals from raw EEG and synthetic data from extracted features, respectively, in creating training data. The presented work is independent of sleep stage scoring and provides double-layered data protection with the utility of augmentation methods. It is ideally suited for real-time detection using a single-channel EEG provides better mobility and comfort while recording. The work analyzes each augmentation layer's performance individually, and better accuracy was observed when merging both. It also evaluates the augmentation performance in various frequency bands, which are decomposed using discrete wavelet transform, and observed that the alpha band contributes more to detection. The classification is performed using Decision Tree (DT), Ensembled Bagged Decision Tree (EBDT), Gradient Boosting (GB), Random Forest (RF), and Stacking classifier (SC), attaining the highest classification accuracy of 94% using RF with a greater Area Under Curve (AUC) value of 0.97 compared to the existing works and is best suited for small datasets.
Collapse
Affiliation(s)
| | - T Vigneswaran
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India.
| |
Collapse
|
4
|
Hong W. Twistable and Stretchable Nasal Patch for Monitoring Sleep-Related Breathing Disorders Based on a Stacking Ensemble Learning Model. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47337-47347. [PMID: 39192683 DOI: 10.1021/acsami.4c11493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Obstructive sleep apnea syndrome disrupts sleep, destroys the homeostasis of biological systems such as metabolism and the immune system, and reduces learning ability and memory. The existing polysomnography used to measure sleep disorders is executed in an unfamiliar environment, which may result in sleep patterns that are different from usual, reducing accuracy. This study reports a machine learning-based personalized twistable patch system that can simply measure obstructive sleep apnea syndrome in daily life. The stretchable patch attaches directly to the nose in an integrated form factor, detecting sleep-disordered breathing by simultaneously sensing microscopic vibrations and airflow in the nasal cavity and paranasal sinuses. The highly sensitive multichannel patch, which can detect airflow at the level of 0.1 m/s, has flexibility via a unique slit pattern and fabric layer. It has linearity with an R2 of 0.992 in the case of the amount of change according to its curvature. The stacking ensemble learning model predicted the degree of sleep-disordered breathing with an accuracy of 92.9%. The approach demonstrates high sleep disorder detection capacity and proactive visual notification. It is expected to help as a diagnostic platform for the early detection of chronic diseases such as cerebrovascular disease and diabetes.
Collapse
Affiliation(s)
- Wonki Hong
- Department of Digital Healthcare, Daejeon University, Daejeon 34520, Republic of Korea
| |
Collapse
|
5
|
Ingle M, Sharma M, Verma S, Sharma N, Bhurane A, Rajendra Acharya U. Automated explainable wavelet-based sleep scoring system for a population suspected with insomnia, apnea and periodic leg movement. Med Eng Phys 2024; 130:104208. [PMID: 39160031 DOI: 10.1016/j.medengphy.2024.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024]
Abstract
Sleep is an integral and vital component of human life, contributing significantly to overall health and well-being, but a considerable number of people worldwide experience sleep disorders. Sleep disorder diagnosis heavily depends on accurately classifying sleep stages. Traditionally, this classification has been performed manually by trained sleep technologists that visually inspect polysomnography records. However, in order to mitigate the labor-intensive nature of this process, automated approaches have been developed. These automated methods aim to streamline and facilitate sleep stage classification. This study aims to classify sleep stages in a dataset comprising subjects with insomnia, PLM, and sleep apnea. The dataset consists of PSG recordings from the multi-ethnic study of atherosclerosis (MESA) cohort of the national sleep research resource (NSRR), including 2056 subjects. Among these subjects, 130 have insomnia, 39 suffer from PLM, 156 have sleep apnea, and the remaining 1731 are classified as good sleepers. This study proposes an automated computerized technique to classify sleep stages, developing a machine-learning model with explainable artificial intelligence (XAI) capabilities using wavelet-based Hjorth parameters. An optimal biorthogonal wavelet filter bank (BOWFB) has been employed to extract subbands (SBs) from 30 seconds of electroencephalogram (EEG) epochs. Three EEG channels, namely: Fz_Cz, Cz_Oz, and C4_M1, are employed to yield an optimum outcome. The Hjorth parameters extracted from SBs were then fed to different machine learning algorithms. To gain an understanding of the model, in this study, we used SHAP (Shapley Additive explanations) method. For subjects suffering from the aforementioned diseases, the model utilized features derived from all channels and employed an ensembled bagged trees (EnBT) classifier. The highest accuracy of 86.8%, 87.3%, 85.0%, 84.5%, and 83.8% is obtained for the insomniac, PLM, apniac, good sleepers and complete datasets, respectively. Using these techniques and datasets, the study aims to enhance sleep stage classification accuracy and improve understanding of sleep disorders such as insomnia, PLM, and sleep apnea.
Collapse
Affiliation(s)
- Manisha Ingle
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur-440010, Maharashtra, India.
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, and Centre of Advanced Defence Technology (CADT), Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad-380026, Gujrat, India.
| | - Shresth Verma
- Department of Electrical and Computer Science Engineering, and Centre of Advanced Defence Technology (CADT), Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad-380026, Gujrat, India.
| | - Nishant Sharma
- Department of Electrical and Computer Science Engineering, and Centre of Advanced Defence Technology (CADT), Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad-380026, Gujrat, India.
| | - Ankit Bhurane
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur-440010, Maharashtra, India.
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia.
| |
Collapse
|
6
|
Jain R, Ganesan RA. Effective diagnosis of sleep disorders using EEG and EOG signals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039043 DOI: 10.1109/embc53108.2024.10782470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This work focuses on the diagnosis of various sleep disorders such as insomnia, narcolepsy, periodic leg movement, nocturnal frontal lobe epilepsy, bruxism, REM behavior disorder, and sleep-disordered breathing. We utilize SVM for classifying each of the sleep disorders from healthy controls. The proposed approach is evaluated on the publicly available CAP dataset comprising 108 overnight recordings from healthy controls and patients with sleep disorders. A single feature called gridded distribution entropy derived from Poincaré plots of EEG signal provides 100% accuracy in distinguishing healthy controls from each pathology, except insomnia and PLM. With the EOG channel, we are able to classify these two groups as well with 100% accuracy, demonstrating the effectiveness of EOG in disambiguating insomnia and PLM from controls.Clinical relevance- Diagnosis of sleep disorders is important to facilitate appropriate treatment. It is challenging due to the diverse nature and inter-subject variation of the physiological symptoms. Automated sleep disorder detection can improve cost efficiency and reduce variability.
Collapse
|
7
|
Zhang W, Liu D, Yuan M, Zhu LQ. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases. Ageing Res Rev 2024; 97:102307. [PMID: 38614368 DOI: 10.1016/j.arr.2024.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Sleep is a highly intricate biological phenomenon, and its disorders play a pivotal role in numerous diseases. However, the specific regulatory mechanisms remain elusive. In recent years, the role of mitochondria in sleep disorders has gained considerable attention. Sleep deprivation not only impairs mitochondrial morphology but also decreases the number of mitochondria and triggers mitochondrial dysfunction. Furthermore, mitochondrial dysfunction has been implicated in the onset and progression of various sleep disorder-related neurological diseases, especially neurodegenerative conditions. Therefore, a greater understanding of the impact of sleep disorders on mitochondrial dysfunction may reveal new therapeutic targets for neurodegenerative diseases. In this review, we comprehensively summarize the recent key findings on the mechanisms underlying mitochondrial dysfunction caused by sleep disorders and their role in initiating or exacerbating common neurodegenerative diseases. In addition, we provide fresh insights into the diagnosis and treatment of sleep disorder-related diseases.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Khan MB, AbuAli N, Hayajneh M, Ullah F, Rehman MU, Chong KT. Software defined radio frequency sensing framework for intelligent monitoring of sleep apnea syndrome. Methods 2023; 218:14-24. [PMID: 37385419 DOI: 10.1016/j.ymeth.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
Healthy sleep is vital to all functions in the body. It improves physical and mental health, strengthens resistance against diseases, and develops strong immunity against metabolism and chronic diseases. However, a sleep disorder can cause the inability to sleep well. Sleep apnea syndrome is a critical breathing disorder that occurs during sleeping when breathing stops suddenly and starts when awake, causing sleep disturbance. If it is not treated timely, it can produce loud snoring and drowsiness or causes more acute health problems such as high blood pressure or heart attack. The accepted standard for diagnosing sleep apnea syndrome is full-night polysomnography. However, its limitations include a high cost and inconvenience. This article aims to develop an intelligent monitoring framework for detecting breathing events based on Software Defined Radio Frequency (SDRF) sensing and verify its feasibility for diagnosing sleep apnea syndrome. We extract the wireless channel state information (WCSI) for breathing motion using channel frequency response (CFR) recorded in time at every instant at the receiver. The proposed approach simplifies the receiver structure with the added functionality of communication and sensing together. Initially, simulations are conducted to test the feasibility of the SDRF sensing design for the simulated wireless channel. Then, a real-time experimental setup is developed in a lab environment to address the challenges of the wireless channel. We conducted 100 experiments to collect the dataset of 25 subjects for four breathing patterns. SDRF sensing system accurately detected breathing events during sleep without subject contact. The developed intelligent framework uses machine learning classifiers to classify sleep apnea syndrome and other breathing patterns with an acceptable accuracy of 95.9%. The developed framework aims to build a non-invasive sensing system to diagnose patients conveniently suffering from sleep apnea syndrome. Furthermore, this framework can easily be further extended for E-health applications.
Collapse
Affiliation(s)
- Muhammad Bilal Khan
- College of Information Technology, United Arab Emirates University (UAEU), Abu Dhabi 15551, United Arab Emirates.
| | - Najah AbuAli
- College of Information Technology, United Arab Emirates University (UAEU), Abu Dhabi 15551, United Arab Emirates.
| | - Mohammad Hayajneh
- College of Information Technology, United Arab Emirates University (UAEU), Abu Dhabi 15551, United Arab Emirates.
| | - Farman Ullah
- College of Information Technology, United Arab Emirates University (UAEU), Abu Dhabi 15551, United Arab Emirates.
| | - Mobeen Ur Rehman
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
9
|
Wang J, Zhao S, Zhou Y, Jiang H, Yu Z, Li T, Li S, Pan G. Narcolepsy Diagnosis With Sleep Stage Features Using PSG Recordings. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3619-3629. [PMID: 37672382 DOI: 10.1109/tnsre.2023.3312396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Narcolepsy is a sleep disorder affecting millions of people worldwide and causes serious public health problems. It is hard for doctors to correctly and objectively diagnose narcolepsy. Polysomnography (PSG) recordings, a gold standard for sleep monitoring and quality measurement, can provide abundant and objective cues for the narcolepsy diagnosis. There have been some studies on automatic narcolepsy diagnosis using PSG recordings. However, the sleep stage information, an important cue for narcolepsy diagnosis, has not been fully utilized. For example, some studies have not considered the sleep stage information to diagnose narcolepsy. Although some studies consider the sleep stage information, the stages are manually scored by experts, which is time-consuming and subjective. And the framework using sleep stages scored automatically for narcolepsy diagnosis is designed in a two-phase learning manner, where sleep staging in the first phase and diagnosis in the second phase, causing cumulative error and degrading the performance. To address these challenges, we propose a novel end-to-end framework for automatic narcolepsy diagnosis using PSG recordings. In particular, adopting the idea of multi-task learning, we take the sleep staging as our auxiliary task, and then combine the sleep stage related features with narcolepsy related features for our primary task of narcolepsy diagnosis. We collected a dataset of PSG recordings from 77 participants and evaluated our framework on it. Both of the sleep stage features and the end-to-end fashion contribute to diagnosis performance. Moreover, we do a comprehensive analysis on the relationship between sleep stages and narcolepsy, correlation of different channels, predictive ability of different sensing data, and diagnosis results in subject level.
Collapse
|
10
|
Sharma M, Verma S, Anand D, Gadre VM, Acharya UR. CAPSCNet: A novel scattering network for automated identification of phasic cyclic alternating patterns of human sleep using multivariate EEG signals. Comput Biol Med 2023; 164:107259. [PMID: 37544251 DOI: 10.1016/j.compbiomed.2023.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
The Cyclic Alternating Pattern (CAP) can be considered a physiological marker of sleep instability. The CAP can examine various sleep-related disorders. Certain short events (A and B phases) manifest related to a specific physiological process or pathology during non-rapid eye movement (NREM) sleep. These phases unexpectedly modify EEG oscillations; hence, manual detection is challenging. Therefore, it is highly desirable to have an automated system for detecting the A-phases (AP). Deep convolution neural networks (CNN) have shown high performance in various healthcare applications. A variant of the deep neural network called the Wavelet Scattering Network (WSN) has been used to overcome the specific limitations of CNN, such as the need for a large amount of data to train the model. WSN is an optimized network that can learn features that help discriminate patterns hidden inside signals. Also, WSNs are invariant to local perturbations, making the network significantly more reliable and effective. It can also help improve performance on tasks where data is minimal. In this study, we proposed a novel WSN-based CAPSCNet to automatically detect AP using EEG signals. Seven dataset variants of cyclic alternating pattern (CAP) sleep cohort is employed for this study. Two electroencephalograms (EEG) derivations, namely: C4-A1 and F4-C4, are used to develop the CAPSCNet. The model is examined using healthy subjects and patients tormented by six different sleep disorders, namely: sleep-disordered breathing (SDB), insomnia, nocturnal frontal lobe epilepsy (NFLE), narcolepsy, periodic leg movement disorder (PLM) and rapid eye movement behavior disorder (RBD) subjects. Several different machine-learning algorithms were used to classify the features obtained from the WSN. The proposed CAPSCNet has achieved the highest average classification accuracy of 83.4% using a trilayered neural network classifier for the healthy data variant. The proposed CAPSCNet is efficient and computationally faster.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Sarv Verma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Divyansh Anand
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Vikram M Gadre
- Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai, India.
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield 4300, Australia.
| |
Collapse
|
11
|
Zheng Y, Liu C, Lai NYG, Wang Q, Xia Q, Sun X, Zhang S. Current development of biosensing technologies towards diagnosis of mental diseases. Front Bioeng Biotechnol 2023; 11:1190211. [PMID: 37456720 PMCID: PMC10342212 DOI: 10.3389/fbioe.2023.1190211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The biosensor is an instrument that converts the concentration of biomarkers into electrical signals for detection. Biosensing technology is non-invasive, lightweight, automated, and biocompatible in nature. These features have significantly advanced medical diagnosis, particularly in the diagnosis of mental disorder in recent years. The traditional method of diagnosing mental disorders is time-intensive, expensive, and subject to individual interpretation. It involves a combination of the clinical experience by the psychiatrist and the physical symptoms and self-reported scales provided by the patient. Biosensors on the other hand can objectively and continually detect disease states by monitoring abnormal data in biomarkers. Hence, this paper reviews the application of biosensors in the detection of mental diseases, and the diagnostic methods are divided into five sub-themes of biosensors based on vision, EEG signal, EOG signal, and multi-signal. A prospective application in clinical diagnosis is also discussed.
Collapse
Affiliation(s)
- Yuhan Zheng
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Robotics Institute, Ningbo University of Technology, Ningbo, China
| | - Chen Liu
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Nai Yeen Gavin Lai
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Qingfeng Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Qinghua Xia
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Xu Sun
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Sheng Zhang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Sharma M, Lodhi H, Yadav R, Elphick H, Acharya UR. Computerized detection of cyclic alternating patterns of sleep: A new paradigm, future scope and challenges. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 235:107471. [PMID: 37037163 DOI: 10.1016/j.cmpb.2023.107471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Sleep quality is associated with wellness, and its assessment can help diagnose several disorders and diseases. Sleep analysis is commonly performed based on self-rating indices, sleep duration, environmental factors, physiologically and polysomnographic-derived parameters, and the occurrence of disorders. However, the correlation that has been observed between the subjective assessment and objective measurements of sleep quality is small. Recently, a few automated systems have been suugested to measure sleep quality to address this challenge. Sleep quality can be assessed by evaluating macrostructure-based sleep analysis via the examination of sleep cycles, namely Rapid Eye Movement (REM) and Non Rapid Eye Movement (NREM) with N1, N2, and N3 stages. However, macrostructure sleep analysis does not consider transitory phenomena like K-complexes and transient fluctuations, which are indispensable in diagnosing various sleep disorders. The CAP, part of the microstructure of sleep, may offer a more precise and relevant examination of sleep and can be considered one of the candidates to measure sleep quality and identify sleep disorders such as insomnia and apnea. CAP is characterized by very subtle changes in the brain's electroencephalogram (EEG) signals that occur during the NREM stage of sleep. The variations among these patterns in healthy subjects and subjects with sleep disorders can be used to identify sleep disorders. Studying CAP is highly arduous for human experts; thus, developing automated systems for assessing CAP is gaining momentum. Developing new techniques for automated CAP detection installed in clinical setups is essential. This paper aims to analyze the algorithms and methods presented in the literature for the automatic assessment of CAP and the development of CAP-based sleep markers that may enhance sleep quality assessment, helping diagnose sleep disorders. METHODS This literature survey examined the automated assessment of CAP and related parameters. We have reviewed 34 research articles, including fourteen ML, nine DL, and ten based on some other techniques. RESULTS The review includes various algorithms, databases, features, classifiers, and classification performances and their comparisons, advantages, and limitations of automated systems for CAP assessment. CONCLUSION A detailed description of state-of-the-art research findings on automated CAP assessment and associated challenges has been presented. Also, the research gaps have been identified based on our review. Further, future research directions are suggested for sleep quality assessment using CAP.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Harsh Lodhi
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Rishita Yadav
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | | | - U Rajendra Acharya
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan; School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia; Department of Biomedical Engineering, School of Science and Technology, Singapore.
| |
Collapse
|
13
|
Cheng YH, Lech M, Wilkinson RH. Simultaneous Sleep Stage and Sleep Disorder Detection from Multimodal Sensors Using Deep Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:3468. [PMID: 37050528 PMCID: PMC10099216 DOI: 10.3390/s23073468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Sleep scoring involves the inspection of multimodal recordings of sleep data to detect potential sleep disorders. Given that symptoms of sleep disorders may be correlated with specific sleep stages, the diagnosis is typically supported by the simultaneous identification of a sleep stage and a sleep disorder. This paper investigates the automatic recognition of sleep stages and disorders from multimodal sensory data (EEG, ECG, and EMG). We propose a new distributed multimodal and multilabel decision-making system (MML-DMS). It comprises several interconnected classifier modules, including deep convolutional neural networks (CNNs) and shallow perceptron neural networks (NNs). Each module works with a different data modality and data label. The flow of information between the MML-DMS modules provides the final identification of the sleep stage and sleep disorder. We show that the fused multilabel and multimodal method improves the diagnostic performance compared to single-label and single-modality approaches. We tested the proposed MML-DMS on the PhysioNet CAP Sleep Database, with VGG16 CNN structures, achieving an average classification accuracy of 94.34% and F1 score of 0.92 for sleep stage detection (six stages) and an average classification accuracy of 99.09% and F1 score of 0.99 for sleep disorder detection (eight disorders). A comparison with related studies indicates that the proposed approach significantly improves upon the existing state-of-the-art approaches.
Collapse
|
14
|
Sharma M, Patel RK, Garg A, SanTan R, Acharya UR. Automated detection of schizophrenia using deep learning: a review for the last decade. Physiol Meas 2023; 44. [PMID: 36630717 DOI: 10.1088/1361-6579/acb24d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
Schizophrenia (SZ) is a devastating mental disorder that disrupts higher brain functions like thought, perception, etc., with a profound impact on the individual's life. Deep learning (DL) can detect SZ automatically by learning signal data characteristics hierarchically without the need for feature engineering associated with traditional machine learning. We performed a systematic review of DL models for SZ detection. Various deep models like long short-term memory, convolution neural networks, AlexNet, etc., and composite methods have been published based on electroencephalographic signals, and structural and/or functional magnetic resonance imaging acquired from SZ patients and healthy patients control subjects in diverse public and private datasets. The studies, the study datasets, and model methodologies are reported in detail. In addition, the challenges of DL models for SZ diagnosis and future works are discussed.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Ruchit Kumar Patel
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Akshat Garg
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Ru SanTan
- Department of Cardiology, National Heart Centre Singapore, Singapore 169609, Singapore
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 639798, Singapore.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.,Department of Biomedical Engineering, School of Science and Technology, Singapore 639798, Singapore
| |
Collapse
|
15
|
Sharma M, Makwana P, Chad RS, Acharya UR. A novel automated robust dual-channel EEG-based sleep scoring system using optimal half-band pair linear-phase biorthogonal wavelet filter bank. APPL INTELL 2023; 53:1-19. [PMID: 36777881 PMCID: PMC9906594 DOI: 10.1007/s10489-022-04432-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/11/2023]
Abstract
Nowadays, the hectic work life of people has led to sleep deprivation. This may further result in sleep-related disorders and adverse physiological conditions. Therefore, sleep study has become an active research area. Sleep scoring is crucial for detecting sleep-related disorders like sleep apnea, insomnia, narcolepsy, periodic leg movement (PLM), and restless leg syndrome (RLS). Sleep is conventionally monitored in a sleep laboratory using polysomnography (PSG) which is the recording of various physiological signals. The traditional sleep stage scoring (SSG) done by professional sleep scorers is a tedious, strenuous, and time-consuming process as it is manual. Hence, developing a machine-learning model for automatic SSG is essential. In this study, we propose an automated SSG approach based on the biorthogonal wavelet filter bank's (BWFB) novel least squares (LS) design. We have utilized a huge Wisconsin sleep cohort (WSC) database in this study. The proposed study is a pioneering work on automatic sleep stage classification using the WSC database, which includes good sleepers and patients suffering from various sleep-related disorders, including apnea, insomnia, hypertension, diabetes, and asthma. To investigate the generalization of the proposed system, we evaluated the proposed model with the following publicly available databases: cyclic alternating pattern (CAP), sleep EDF, ISRUC, MIT-BIH, and the sleep apnea database from St. Vincent's University. This study uses only two unipolar EEG channels, namely O1-M2 and C3-M2, for the scoring. The Hjorth parameters (HP) are extracted from the wavelet subbands (SBS) that are obtained from the optimal BWFB. To classify sleep stages, the HP features are fed to several supervised machine learning classifiers. 12 different datasets have been created to develop a robust model. A total of 12 classification tasks (CT) have been conducted employing various classification algorithms. Our developed model achieved the best accuracy of 83.2% and Cohen's Kappa of 0.7345 to reliably distinguish five sleep stages, using an ensemble bagged tree classifier with 10-fold cross-validation using WSC data. We also observed that our system is either better or competitive with existing state-of-art systems when we tested with the above-mentioned five databases other than WSC. This method yielded promising results using only two EEG channels using a huge WSC database. Our approach is simple and hence, the developed model can be installed in home-based clinical systems and wearable devices for sleep scoring.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, 380026 India
| | - Paresh Makwana
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, 380026 India
| | - Rajesh Singh Chad
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, 380026 India
| | - U Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore, 599489 Singapore
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354 Taiwan
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore, Singapore
| |
Collapse
|
16
|
Dakhale BJ, Sharma M, Arif M, Asthana K, Bhurane AA, Kothari AG, Rajendra Acharya U. An automatic sleep-scoring system in elderly women with osteoporosis fractures using frequency localized finite orthogonal quadrature Fejer Korovkin kernels. Med Eng Phys 2023; 112:103956. [PMID: 36842776 DOI: 10.1016/j.medengphy.2023.103956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/04/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Healthy sleep signifies a good physical and mental state of the body. However, factors such as inappropriate work schedules, medical complications, and others can make it difficult to get enough sleep, leading to various sleep disorders. The identification of these disorders requires sleep stage classification. Visual evaluation of sleep stages is time intensive, placing a significant strain on sleep experts and prone to human errors. As a result, it is crucial to develop machine learning algorithms to score sleep stages to acquire an accurate diagnosis. Hence, a new methodology for automated sleep stage classification is suggested using machine learning and filtering electroencephalogram (EEG) signals. The national sleep research resource's (NSRR) study of osteoporotic fractures (SOF) dataset comprising 453 subjects' polysomnograph (PSG) data is used in this study. Only two unipolar EEG derivations C4-A1 and C3-A2 are employed individually and jointly in this work. The EEG signals are decomposed into sub-bands using a frequency-localized finite orthogonal quadrature Fejer Korovkin wavelet filter bank. The wavelet-based entropy features are extracted from sub-bands. Subsequently, extracted features are classified using machine learning techniques. Our developed model obtained the highest classification accuracy of 81.3%, using an ensembled bagged trees classifier with a 10-fold cross-validation method and Cohen's Kappa coefficient of 0.72. The proposed model is accurate, dependable, and easy to implement and can be employed as an alternative to a PSG-based system at home with minimal resources. It is also ready to be tested on other EEG data to evaluate the sleep stages of healthy and unhealthy subjects.
Collapse
Affiliation(s)
- Bharti Jogi Dakhale
- Department of Electonics and Communication, Indian Institute of Information Technology Nagpur, Maharashtra, India.
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Mohammad Arif
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Kushagra Asthana
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
| | - Ankit A Bhurane
- Department of Electronics and Communication, Visvesvaraya National Institute of Technology Nagpur, Maharashtra, India.
| | - Ashwin G Kothari
- Department of Electronics and Communication, Visvesvaraya National Institute of Technology Nagpur, Maharashtra, India.
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 639798, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan; Department of Biomedical Engineering, School of Science and Technology, Singapore 639798, Singapore.
| |
Collapse
|
17
|
Sharma M, Kumar K, Kumar P, Tan RS, Rajendra Acharya U. Pulse oximetry SpO2signal for automated identification of sleep apnea: a review and future trends. Physiol Meas 2022; 43. [PMID: 36215979 DOI: 10.1088/1361-6579/ac98f0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2023]
Abstract
Sleep apnea (SA) is characterized by intermittent episodes of apnea or hypopnea paused or reduced breathing, respectively each lasting at least ten seconds that occur during sleep. SA has an estimated global prevalence of 200 million and is associated with medical comorbidity, and sufferers are also more likely to sustain traffic- and work-related injury due to daytime somnolence. SA is amenable to treatment if detected early. Polysomnography (PSG) involving multi-channel signal acquisition is the reference standard for diagnosing SA but is onerous and costly. For home-based detection of SA, single-channelSpO2signal acquisition using portable pulse oximeters is feasible. Machine (ML) and deep learning (DL) models have been developed for automated classification of SA versus no SA usingSpO2signals alone. In this work, we review studies published between 2012 and 2022 on the use of ML and DL forSpO2signal-based diagnosis of SA. A literature search based on PRISMA recommendations yielded 297 publications, of which 31 were selected after considering the inclusion and exclusion criteria. There were 20 ML and 11 DL models; their methods, differences, results, merits, and limitations were discussed. Many studies reported encouraging performance, which indicates the utility ofSpO2signals in wearable devices for home-based SA detection.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Kamlesh Kumar
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Prince Kumar
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore 169609, Singapore
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 639798, Singapore.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.,Department of Biomedical Engineering, School of Science and Technology, Singapore 639798, Singapore
| |
Collapse
|
18
|
Altıntop ÇG, Latifoğlu F, Akın AK. Can patients in deep coma hear us? Examination of coma depth using physiological signals. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Zhao C, Li J, Guo Y. SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106806. [PMID: 35461126 DOI: 10.1016/j.cmpb.2022.106806] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages. METHODS In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples. RESULTS We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation. CONCLUSIONS The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.
Collapse
Affiliation(s)
- Caihong Zhao
- School of Electronic and Engineer, Heilongjiang University, Harbin, 150080, China; School of Computer Science and Technology, Heilongjiang University, Harbin, 150080, China
| | - Jinbao Li
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Yahong Guo
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
20
|
Rajput JS, Sharma M, Kumar TS, Acharya UR. Automated Detection of Hypertension Using Continuous Wavelet Transform and a Deep Neural Network with Ballistocardiography Signals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074014. [PMID: 35409698 PMCID: PMC8997686 DOI: 10.3390/ijerph19074014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023]
Abstract
Managing hypertension (HPT) remains a significant challenge for humanity. Despite advancements in blood pressure (BP)-measuring systems and the accessibility of effective and safe anti-hypertensive medicines, HPT is a major public health concern. Headaches, dizziness and fainting are common symptoms of HPT. In HPT patients, normalcy may be observed at one instant and abnormality may prevail during a long duration of 24 h ambulatory BP. This may cause difficulty in identifying patients with HPT, and hence there is a possibility that individuals may be untreated or administered insufficiently. Most importantly, uncontrolled HPT can lead to severe complications (stroke, heart attack, kidney disease, and heart failure), mainly ignoring the signs in nascent stages. HPT in the beginning stages may not present distinct symptoms and may be difficult to diagnose from standard physiological signals. Hence, ballistocardiography (BCG) signal was used in this study to detect HPT automatically. The processed signals from BCG were converted into scalogram images using a continuous wavelet transform (CWT) and were then fed into a 2-D convolutional neural network model (2D-CNN). The model was trained to learn and recognize BCG patterns of healthy controls (HC) and HPT classes. Our proposed model obtained a high classification accuracy of 86.14% with a ten-fold cross-validation (CV) strategy. Hence, this is the first use of a 2D-CNN model (deep-learning algorithm) to detect HPT employing BCG signals.
Collapse
Affiliation(s)
- Jaypal Singh Rajput
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India; (J.S.R.); (T.S.K.)
| | - Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India; (J.S.R.); (T.S.K.)
- Correspondence:
| | - T. Sudheer Kumar
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India; (J.S.R.); (T.S.K.)
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 639798, Singapore;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore 639798, Singapore
| |
Collapse
|
21
|
Automated detection of obstructive sleep apnea in more than 8000 subjects using frequency optimized orthogonal wavelet filter bank with respiratory and oximetry signals. Comput Biol Med 2022; 144:105364. [PMID: 35299046 DOI: 10.1016/j.compbiomed.2022.105364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder marked by interruption of the respiratory tract and difficulty in breathing. The risk of serious health damage can be reduced if OSA is diagnosed and treated at an early stage. OSA is primarily diagnosed using polysomnography (PSG) monitoring performed for overnight sleep; furthermore, capturing PSG signals during the night is expensive, time-consuming, complex and highly inconvenient to patients. Hence, we are proposing to detect OSA automatically using respiratory and oximetry signals. The aim of this study is to develop a simple and computationally efficient wavelet-based automated system based on these signals to detect OSA in elderly subjects. In this study, we proposed an accurate, reliable, and less complex OSA automated detection system by using pulse oximetry (SpO2) and respiratory signals including thoracic (ThorRes) movement, abdominal (AbdoRes) movement, and airflow (AF). These signals are collected from the Sleep Heart Health Study (SHHS) database from the National Sleep Research Resource (NSRR), which is one of the largest repositories of publicly available sleep databases. The database comprises of two groups SHHS-1 and SHHS-2, which involves 5,793 and 2,651 subjects, respectively with an average age of ≥60 years. The 30-s epochs of the signals are decomposed into sub-bands using frequency optimized orthogonal wavelet filter bank. Tsallis entropies are extracted from the sub-band coefficients of wavelet filter bank. A total 4,415,229 epochs of respiratory and oximetry signals are used to develop the model. The proposed model is developed using GentleBoost and Random under-sampling Boosting (RUSBoosted Tree) algorithms with 10-fold cross-validation technique. Our developed model has obtained the highest classification accuracy of 89.39% and 84.64% for the imbalanced and balanced datasets, respectively using 10-fold cross-validation technique. Using the 20% hold-out validation, the model yielded an accuracy of 88.26% and 84.31% for the imbalanced and balanced datasets, respectively. Hence, the respiratory and SpO2 signals-based model can be used for automated OSA detection. The results obtained from the proposed model are better than the state-of-the-art models and can be used in-home for screening the OSA.
Collapse
|
22
|
Sharma M, Bapodara S, Tiwari J, Acharya UR. Automated sleep apnea detection in pregnant women using wavelet-based features. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|