1
|
Cao L, He R, Zhang A, Li L, Cao W, Liu N, Zhang P. Development of a deep learning system for predicting biochemical recurrence in prostate cancer. BMC Cancer 2025; 25:232. [PMID: 39930342 PMCID: PMC11812243 DOI: 10.1186/s12885-025-13628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Biochemical recurrence (BCR) occurs in 20%-40% of men with prostate cancer (PCa) who undergo radical prostatectomy. Predicting which patients will experience BCR in advance helps in formulating more targeted prostatectomy procedures. However, current preoperative recurrence prediction mainly relies on the use of the Gleason grading system, which omits within-grade morphological patterns and subtle histopathological features, leaving a significant amount of prognostic potential unexplored. METHODS We collected and selected a total of 1585 prostate biopsy images with tumor regions from 317 patients (5 Whole Slide Images per patient) to develop a deep learning system for predicting BCR of PCa before prostatectomy. The Inception_v3 neural network was employed to train and test models developed from patch-level images. The multiple instance learning method was used to extract whole slide image-level features. Finally, patient-level artificial intelligence models were developed by integrating deep learning -generated pathology features with several machine learning algorithms. RESULTS The BCR prediction system demonstrated great performance in the testing cohort (AUC = 0.911, 95% Confidence Interval: 0.840-0.982) and showed the potential to produce favorable clinical benefits according to Decision Curve Analyses. Increasing the number of WSIs for each patient improves the performance of the prediction system. Additionally, the study explores the correlation between deep learning -generated features and pathological findings, emphasizing the interpretative potential of artificial intelligence models in pathology. CONCLUSIONS Deep learning system can use biopsy samples to predict the risk of BCR in PCa, thereby formulating targeted treatment strategies.
Collapse
Affiliation(s)
- Lu Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ruimin He
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ao Zhang
- Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Lingmei Li
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Ning Liu
- Department of Pathology, Tianjin Baodi Hospital, Tianjin, 301899, China.
| | - Peisen Zhang
- Tianjin University of Science and Technology, Tianjin, 300222, China.
| |
Collapse
|
2
|
Tian H, Tian Y, Li D, Zhao M, Luo Q, Kong L, Qin T. Artificial intelligence model predicts M2 macrophage levels and HCC prognosis with only globally labeled pathological images. Front Oncol 2024; 14:1474155. [PMID: 39759153 PMCID: PMC11695232 DOI: 10.3389/fonc.2024.1474155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Background and aims The levels of M2 macrophages are significantly associated with the prognosis of hepatocellular carcinoma (HCC), however, current detection methods in clinical settings remain challenging. Our study aims to develop a weakly supervised artificial intelligence model using globally labeled histological images, to predict M2 macrophage levels and forecast the prognosis of HCC patients by integrating clinical features. Methods CIBERSORTx was used to calculate M2 macrophage abundance. We developed a slide-level, weakly-supervised clustering method for Whole Slide Images (WSIs) by integrating Masked Autoencoders (MAE) with ResNet-32t to predict M2 macrophage abundance. Results We developed an MAE-ResNet model to predict M2 macrophage levels using WSIs. In the testing dataset, the area under the curve (AUC) (95% CI) was 0.73 (0.59-0.87). We constructed a Cox regression model showing that the predicted probabilities of M2 macrophage abundance were negatively associated with the prognosis of HCC (HR=1.89, p=0.031). Furthermore, we incorporated clinical data, screened variables using Lasso regression, and built the comprehensive prediction model that better predicted prognosis. (HR=2.359, p=0.001). Conclusion Our models effectively predicted M2 macrophage levels and HCC prognosis. The findings suggest that our models offer a novel method for determining biomarker levels and forecasting prognosis, eliminating additional clinical tests, thereby delivering substantial clinical benefits.
Collapse
Affiliation(s)
- Huiyuan Tian
- Department of Scientific Research and Foreign Affairs, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Yongshao Tian
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Dujuan Li
- Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Minfan Zhao
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiankun Luo
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Tao Qin
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Zhu L, Pan J, Mou W, Deng L, Zhu Y, Wang Y, Pareek G, Hyams E, Carneiro BA, Hadfield MJ, El-Deiry WS, Yang T, Tan T, Tong T, Ta N, Zhu Y, Gao Y, Lai Y, Cheng L, Chen R, Xue W. Harnessing artificial intelligence for prostate cancer management. Cell Rep Med 2024; 5:101506. [PMID: 38593808 PMCID: PMC11031422 DOI: 10.1016/j.xcrm.2024.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Prostate cancer (PCa) is a common malignancy in males. The pathology review of PCa is crucial for clinical decision-making, but traditional pathology review is labor intensive and subjective to some extent. Digital pathology and whole-slide imaging enable the application of artificial intelligence (AI) in pathology. This review highlights the success of AI in detecting and grading PCa, predicting patient outcomes, and identifying molecular subtypes. We propose that AI-based methods could collaborate with pathologists to reduce workload and assist clinicians in formulating treatment recommendations. We also introduce the general process and challenges in developing AI pathology models for PCa. Importantly, we summarize publicly available datasets and open-source codes to facilitate the utilization of existing data and the comparison of the performance of different models to improve future studies.
Collapse
Affiliation(s)
- Lingxuan Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Changping Laboratory, Beijing, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Weiming Mou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longxin Deng
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanqing Wang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Gyan Pareek
- Department of Surgery (Urology), Brown University Warren Alpert Medical School, Providence, RI, USA; Minimally Invasive Urology Institute, Providence, RI, USA
| | - Elias Hyams
- Department of Surgery (Urology), Brown University Warren Alpert Medical School, Providence, RI, USA; Minimally Invasive Urology Institute, Providence, RI, USA
| | - Benedito A Carneiro
- The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI, USA
| | - Matthew J Hadfield
- The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI, USA
| | - Wafik S El-Deiry
- The Legorreta Cancer Center at Brown University, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology & Laboratory Medicine, The Warren Alpert Medical School of Brown University, The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Tao Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tan
- Faculty of Applied Sciences, Macao Polytechnic University, Address: R. de Luís Gonzaga Gomes, Macao, China
| | - Tong Tong
- College of Physics and Information Engineering, Fuzhou University, Fujian 350108, China
| | - Na Ta
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yan Zhu
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yisha Gao
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yancheng Lai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liang Cheng
- Department of Surgery (Urology), Brown University Warren Alpert Medical School, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA.
| | - Rui Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
4
|
Li M, Hu Z, Qiu S, Zhou C, Weng J, Dong Q, Sheng X, Ren N, Zhou M. Dual-branch hybrid encoding embedded network for histopathology image classification. Phys Med Biol 2023; 68:195002. [PMID: 37647919 DOI: 10.1088/1361-6560/acf556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Objective.Learning-based histopathology image (HI) classification methods serve as important tools for auxiliary diagnosis in the prognosis stage. However, most existing methods are focus on a single target cancer due to inter-domain differences among different cancer types, limiting their applicability to different cancer types. To overcome these limitations, this paper presents a high-performance HI classification method that aims to address inter-domain differences and provide an improved solution for reliable and practical HI classification.Approach.Firstly, we collect a high-quality hepatocellular carcinoma (HCC) dataset with enough data to verify the stability and practicability of the method. Secondly, a novel dual-branch hybrid encoding embedded network is proposed, which integrates the feature extraction capabilities of convolutional neural network and Transformer. This well-designed structure enables the network to extract diverse features while minimizing redundancy from a single complex network. Lastly, we develop a salient area constraint loss function tailored to the unique characteristics of HIs to address inter-domain differences and enhance the robustness and universality of the methods.Main results.Extensive experiments have conducted on the proposed HCC dataset and two other publicly available datasets. The proposed method demonstrates outstanding performance with an impressive accuracy of 99.09% on the HCC dataset and achieves state-of-the-art results on the other two public datasets. These remarkable outcomes underscore the superior performance and versatility of our approach in multiple HI classification.Significance.The advancements presented in this study contribute to the field of HI analysis by providing a reliable and practical solution for multiple cancer classification, potentially improving diagnostic accuracy and patient outcomes. Our code is available athttps://github.com/lms-design/DHEE-net.
Collapse
Affiliation(s)
- Mingshuai Li
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Zhiqiu Hu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China
| | - Song Qiu
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, 200241, People's Republic of China
- MOE Engineering Research Center of Software/Hardware Co-design Technology and Application, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Chenhao Zhou
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Jialei Weng
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China
| | - Xia Sheng
- Department of Pathology, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China
| | - Ning Ren
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Mei Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, 200241, People's Republic of China
| |
Collapse
|
5
|
Rabilloud N, Allaume P, Acosta O, De Crevoisier R, Bourgade R, Loussouarn D, Rioux-Leclercq N, Khene ZE, Mathieu R, Bensalah K, Pecot T, Kammerer-Jacquet SF. Deep Learning Methodologies Applied to Digital Pathology in Prostate Cancer: A Systematic Review. Diagnostics (Basel) 2023; 13:2676. [PMID: 37627935 PMCID: PMC10453406 DOI: 10.3390/diagnostics13162676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Deep learning (DL), often called artificial intelligence (AI), has been increasingly used in Pathology thanks to the use of scanners to digitize slides which allow us to visualize them on monitors and process them with AI algorithms. Many articles have focused on DL applied to prostate cancer (PCa). This systematic review explains the DL applications and their performances for PCa in digital pathology. Article research was performed using PubMed and Embase to collect relevant articles. A Risk of Bias (RoB) was assessed with an adaptation of the QUADAS-2 tool. Out of the 77 included studies, eight focused on pre-processing tasks such as quality assessment or staining normalization. Most articles (n = 53) focused on diagnosis tasks like cancer detection or Gleason grading. Fifteen articles focused on prediction tasks, such as recurrence prediction or genomic correlations. Best performances were reached for cancer detection with an Area Under the Curve (AUC) up to 0.99 with algorithms already available for routine diagnosis. A few biases outlined by the RoB analysis are often found in these articles, such as the lack of external validation. This review was registered on PROSPERO under CRD42023418661.
Collapse
Affiliation(s)
- Noémie Rabilloud
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes University, 35033 Rennes, France (S.-F.K.-J.)
| | - Pierre Allaume
- Department of Pathology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.)
| | - Oscar Acosta
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes University, 35033 Rennes, France (S.-F.K.-J.)
| | - Renaud De Crevoisier
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes University, 35033 Rennes, France (S.-F.K.-J.)
- Department of Radiotherapy, Centre Eugène Marquis, 35033 Rennes, France
| | - Raphael Bourgade
- Department of Pathology, Nantes University Hospital, 44000 Nantes, France
| | | | - Nathalie Rioux-Leclercq
- Department of Pathology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.)
| | - Zine-eddine Khene
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes University, 35033 Rennes, France (S.-F.K.-J.)
- Department of Urology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Romain Mathieu
- Department of Urology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Karim Bensalah
- Department of Urology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Thierry Pecot
- Facility for Artificial Intelligence and Image Analysis (FAIIA), Biosit UAR 3480 CNRS-US18 INSERM, Rennes University, 2 Avenue du Professeur Léon Bernard, 35042 Rennes, France
| | - Solene-Florence Kammerer-Jacquet
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes University, 35033 Rennes, France (S.-F.K.-J.)
- Department of Pathology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.)
| |
Collapse
|