1
|
Selvam IJ, Madhavan M, Kumarasamy SK. Detection and classification of electrocardiography using hybrid deep learning models. Hellenic J Cardiol 2025; 81:75-84. [PMID: 39218394 DOI: 10.1016/j.hjc.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Electrocardiography (ECGs) has been a vital tool for cardiovascular disease (CVD) diagnosis, which visually depicts the heart's electrical activity. To enhance automatic classification between normal and diseased ECG, it is essential to extract consistent and qualitative features. METHODS Precision of ECG classification through a hybrid Deep Learning (DL) approach leverages both Convolutional Neural Network (CNN) architecture and Variational Autoencoder (VAE) techniques. By combining these methods, we aim to achieve more accurate and robust ECG interpretation. The method is trained and tested over the PTB-XL dataset, which contains 21,799 with 12-lead ECGs from 18,869 patients, each spanning 10 s. The classification evaluation of five super-classes and 23 sub-classes of CVD, with the proposed CNN-VAE model is compared. RESULTS The classification of various CVDs resulted in the highest accuracy of 98.51%, specificity of 98.12%, sensitivity of 97.9%, and F1-score of 97.95%. We have also achieved the minimum false positive and false negative rates of 2.07% and 1.87%, respectively, during validation. The results are validated upon the annotations given by individual cardiologists, who assigned potentially multiple ECG statements to each record. CONCLUSION When compared to other deep learning methods, our suggested CNN-VAE model performs significantly better in the testing phase. This study proposes a new architecture of combining CNN-VAE for CVD classification from ECG data, this can help clinicians to identify the disease earlier and carry out further treatment. The CNN-VAE model can better characterize input signals due to its hybrid architecture.
Collapse
Affiliation(s)
- Immaculate Joy Selvam
- Department of Electronics and Communication Engineering, Saveetha Engineering College, Thandalam, Chennai, 602105, India.
| | - Moorthi Madhavan
- Department of Biomedical Engineering, Saveetha Engineering College, Thandalam, Chennai, 602105, India.
| | - Senthil Kumar Kumarasamy
- Department of Electronics and Communication Engineering, Central Polytechnic College, Tharamani, Chennai, 600113, India.
| |
Collapse
|
2
|
Öztürk D, Aydoğan S, Kök İ, Akın Bülbül I, Özdemir S, Özdemir S, Akay D. Linguistic summarization of visual attention and developmental functioning of young children with autism spectrum disorder. Health Inf Sci Syst 2024; 12:39. [PMID: 39022602 PMCID: PMC11252111 DOI: 10.1007/s13755-024-00297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
Diagnosing autism spectrum disorder (ASD) in children poses significant challenges due to its complex nature and impact on social communication development. While numerous data analytics techniques have been proposed for ASD evaluation, the process remains time-consuming and lacks clarity. Eye tracking (ET) data has emerged as a valuable resource for ASD risk assessment, yet existing literature predominantly focuses on predictive methods rather than descriptive techniques that offer human-friendly insights. Interpretation of ET data and Bayley scales, a widely used assessment tool, is challenging for ASD assessment of children. It should be understood clearly to perform better analytic tasks on ASD screening. Therefore, this study addresses this gap by employing linguistic summarization techniques to generate easily understandable summaries from raw ET data and Bayley scales. By integrating ET data and Bayley scores, the study aims to improve the identification of children with ASD from typically developing children (TD). Notably, this research represents one of the pioneering efforts to linguistically summarize ET data alongside Bayley scales, presenting comparative results between children with ASD and TD. Through linguistic summarization, this study facilitates the creation of simple, natural language statements, offering a first and unique approach to enhance ASD screening and contribute to our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Demet Öztürk
- Department of Industrial Engineering, Gazi University, Ankara, Turkey
| | - Sena Aydoğan
- Department of Industrial Engineering, Gazi University, Ankara, Turkey
| | - İbrahim Kök
- Department of Computer Engineering, Pamukkale University, Denizli, Turkey
| | - Işık Akın Bülbül
- Department of Special Education, Gazi University, Ankara, Turkey
| | - Selda Özdemir
- Department of Special Education, Hacettepe University, Ankara, Turkey
| | - Suat Özdemir
- Department of Computer Engineering, Hacettepe University, Ankara, Turkey
| | - Diyar Akay
- Department of Industrial Engineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Bayani A, Kargar M. LDCNN: A new arrhythmia detection technique with ECG signals using a linear deep convolutional neural network. Physiol Rep 2024; 12:e16182. [PMID: 39218586 PMCID: PMC11366442 DOI: 10.14814/phy2.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The electrocardiogram (ECG) is a fundamental and widely used tool for diagnosing cardiovascular diseases. It involves recording cardiac electrical signals using electrodes, which illustrate the functioning of cardiac muscles during contraction and relaxation phases. ECG is instrumental in identifying abnormal cardiac activity, heart attacks, and various cardiac conditions. Arrhythmia detection, a critical aspect of ECG analysis, entails accurately classifying heartbeats. However, ECG signal analysis demands a high level of expertise, introducing the possibility of human errors in interpretation. Hence, there is a clear need for robust automated detection techniques. Recently, numerous methods have emerged for arrhythmia detection from ECG signals. In our research, we developed a novel one-dimensional deep neural network technique called linear deep convolutional neural network (LDCNN) to identify arrhythmias from ECG signals. We compare our suggested method with several state-of-the-art algorithms for arrhythmia detection. We evaluate our methodology using benchmark datasets, including the PTB Diagnostic ECG and MIT-BIH Arrhythmia databases. Our proposed method achieves high accuracy rates of 99.24% on the PTB Diagnostic ECG dataset and 99.38% on the MIT-BIH Arrhythmia dataset.
Collapse
Affiliation(s)
- Ali Bayani
- Department of Computer Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran
| | - Masoud Kargar
- Department of Computer Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran
| |
Collapse
|
4
|
Kaur R, Vaithiyanathan R. Hybrid YSGOA and neural networks based software failure prediction in cloud systems. Sci Rep 2024; 14:16035. [PMID: 38992079 PMCID: PMC11239910 DOI: 10.1038/s41598-024-67107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
In the realm of cloud computing, ensuring the dependability and robustness of software systems is paramount. The intricate and evolving nature of cloud infrastructures, however, presents substantial obstacles in the pre-emptive identification and rectification of software anomalies. This study introduces an innovative methodology that amalgamates hybrid optimization algorithms with Neural Networks (NN) to refine the prediction of software malfunctions. The core objective is to augment the purity metric of our method across diverse operational conditions. This is accomplished through the utilization of two distinct optimization algorithms: the Yellow Saddle Goat Fish Algorithm (YSGA), which is instrumental in the discernment of pivotal features linked to software failures, and the Grasshopper Optimization Algorithm (GOA), which further polishes the feature compilation. These features are then processed by Neural Networks (NN), capitalizing on their proficiency in deciphering intricate data patterns and interconnections. The NNs are integral to the classification of instances predicated on the ascertained features. Our evaluation, conducted using the Failure-Dataset-OpenStack database and MATLAB Software, demonstrates that the hybrid optimization strategy employed for feature selection significantly curtails complexity and expedites processing.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Assistant Professor, Department of Computer Science & Technology; Research Scholar, Department of Computer Science & Engineering, Dayananda Sagar University, Bangalore, India.
| | - Revathi Vaithiyanathan
- Associate Professor, Department of Computer Science and Engineering, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
5
|
EPMoghaddam D, Muguli A, Razavi M, Aazhang B. A graph-based cardiac arrhythmia classification methodology using one-lead ECG recordings. INTELLIGENT SYSTEMS WITH APPLICATIONS 2024; 22:200385. [PMID: 39206419 PMCID: PMC11351913 DOI: 10.1016/j.iswa.2024.200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this study, we present a novel graph-based methodology for an accurate classification of cardiac arrhythmia diseases using a single-lead electrocardiogram (ECG). The proposed approach employs the visibility graph technique to generate graphs from time signals. Subsequently, informative features are extracted from each graph and then fed into classifiers to match the input ECG signal with the appropriate target arrhythmia class. The six target classes in this study are normal (N), left bundle branch block (LBBB), right bundle branch block (RBBB), premature ventricular contraction (PVC), atrial premature contraction (A), and fusion (F) beats. Three classification models were explored, including graph convolutional neural network (GCN), multi-layer perceptron (MLP), and random forest (RF). ECG recordings from the MIT-BIH arrhythmia database were utilized to train and evaluate these classifiers. The results indicate that the multi-layer perceptron model attains the highest performance, showcasing an average accuracy of 99.02%. Following closely, the random forest achieves a strong performance as well, with an accuracy of 98.94% while providing critical intuitions.
Collapse
Affiliation(s)
- Dorsa EPMoghaddam
- Department of Electrical and Computer Engineering, Rice University, TX, United States of America
| | - Ananya Muguli
- Department of Electrical and Computer Engineering, Rice University, TX, United States of America
| | - Mehdi Razavi
- Department of Cardiology, Texas Heart Institute, TX, United States of America
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, TX, United States of America
| |
Collapse
|
6
|
Chen X, Si Y, Zhang Z, Yang W, Feng J. Improving Adversarial Robustness of ECG Classification Based on Lipschitz Constraints and Channel Activation Suppression. SENSORS (BASEL, SWITZERLAND) 2024; 24:2954. [PMID: 38733060 PMCID: PMC11086233 DOI: 10.3390/s24092954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Deep neural networks (DNNs) are increasingly important in the medical diagnosis of electrocardiogram (ECG) signals. However, research has shown that DNNs are highly vulnerable to adversarial examples, which can be created by carefully crafted perturbations. This vulnerability can lead to potential medical accidents. This poses new challenges for the application of DNNs in the medical diagnosis of ECG signals. This paper proposes a novel network Channel Activation Suppression with Lipschitz Constraints Net (CASLCNet), which employs the Channel-wise Activation Suppressing (CAS) strategy to dynamically adjust the contribution of different channels to the class prediction and uses the 1-Lipschitz's ℓ∞ distance network as a robust classifier to reduce the impact of adversarial perturbations on the model itself in order to increase the adversarial robustness of the model. The experimental results demonstrate that CASLCNet achieves ACCrobust scores of 91.03% and 83.01% when subjected to PGD attacks on the MIT-BIH and CPSC2018 datasets, respectively, which proves that the proposed method in this paper enhances the model's adversarial robustness while maintaining a high accuracy rate.
Collapse
Affiliation(s)
- Xin Chen
- School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China; (X.C.); (Z.Z.); (W.Y.); (J.F.)
- College of Communication Engineering, Jilin University, Changchun 130012, China
| | - Yujuan Si
- School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China; (X.C.); (Z.Z.); (W.Y.); (J.F.)
- College of Communication Engineering, Jilin University, Changchun 130012, China
| | - Zhanyuan Zhang
- School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China; (X.C.); (Z.Z.); (W.Y.); (J.F.)
- College of Communication Engineering, Jilin University, Changchun 130012, China
| | - Wenke Yang
- School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China; (X.C.); (Z.Z.); (W.Y.); (J.F.)
- College of Communication Engineering, Jilin University, Changchun 130012, China
| | - Jianchao Feng
- School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China; (X.C.); (Z.Z.); (W.Y.); (J.F.)
- College of Communication Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Islam T, Washington P. Non-Invasive Biosensing for Healthcare Using Artificial Intelligence: A Semi-Systematic Review. BIOSENSORS 2024; 14:183. [PMID: 38667177 PMCID: PMC11048540 DOI: 10.3390/bios14040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
The rapid development of biosensing technologies together with the advent of deep learning has marked an era in healthcare and biomedical research where widespread devices like smartphones, smartwatches, and health-specific technologies have the potential to facilitate remote and accessible diagnosis, monitoring, and adaptive therapy in a naturalistic environment. This systematic review focuses on the impact of combining multiple biosensing techniques with deep learning algorithms and the application of these models to healthcare. We explore the key areas that researchers and engineers must consider when developing a deep learning model for biosensing: the data modality, the model architecture, and the real-world use case for the model. We also discuss key ongoing challenges and potential future directions for research in this field. We aim to provide useful insights for researchers who seek to use intelligent biosensing to advance precision healthcare.
Collapse
|
8
|
Aarthy ST, Mazher Iqbal JL. A novel deep learning approach for early detection of cardiovascular diseases from ECG signals. Med Eng Phys 2024; 125:104111. [PMID: 38508789 DOI: 10.1016/j.medengphy.2024.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases, often asymptomatic until severe, pose a significant challenge in medical diagnosis. Despite individuals' normal outward appearance and routine activities, subtle indications of these diseases can manifest in the electrocardiogram (ECG) signals, often overlooked by standard interpretation. Current machine learning models have been ineffective in discerning these minor variations due to the irregular and subtle nature of changes in the ECG patterns. This paper uses a novel deep-learning approach to predict slight variations in ECG signals by fine-tuning the learning rate of a deep convolutional neural network. The strategy involves segmenting ECG signals into separate data sequences, each evaluated for unique centroid points. Utilizing a clustering approach, this technique efficiently recognizes minute yet significant variations in the ECG signal characteristics. This method is estimated using a specific dataset from SRM College Hospital and Research Centre, Kattankulathur, Chennai, India, focusing on patients' ECG signals. The model aims to predict the ordinary and subtle variations in ECG signal patterns, which were subsequently mapped to a pre-trained feature set of cardiovascular diseases. The results suggest that the proposed method outperforms existing state-of-the-art approaches in detecting minor and irregular ECG signal variations. This advancement could significantly enhance the early detection of cardiovascular diseases, offering a promising new tool in predictive medical diagnostics.
Collapse
Affiliation(s)
- S T Aarthy
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R &D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India; Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.
| | - J L Mazher Iqbal
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R &D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Wen W, Zhang H, Wang Z, Gao X, Wu P, Lin J, Zeng N. Enhanced multi-label cardiology diagnosis with channel-wise recurrent fusion. Comput Biol Med 2024; 171:108210. [PMID: 38417383 DOI: 10.1016/j.compbiomed.2024.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
The timely detection of abnormal electrocardiogram (ECG) signals is vital for preventing heart disease. However, traditional automated cardiology diagnostic methods have the limitation of being unable to simultaneously identify multiple diseases in a segment of ECG signals, and do not consider the potential correlations between the 12-lead ECG signals. To address these issues, this paper presents a novel network architecture, denoted as Branched Convolution and Channel Fusion Network (BCCF-Net), designed for the multi-label diagnosis of ECG cardiology to achieve simultaneous identification of multiple diseases. Among them, the BCCF-Net incorporates the Channel-wise Recurrent Fusion (CRF) network, which is designed to enhance the ability to explore potential correlation information between 12 leads. Furthermore, the utilization of the squeeze and excitation (SE) attention mechanism maximizes the potential of the convolutional neural network (CNN). In order to efficiently capture complex patterns in space and time across various scales, the multi branch convolution (MBC) module has been developed. Through extensive experiments on two public datasets with seven subtasks, the efficacy and robustness of the proposed ECG multi-label classification framework have been comprehensively evaluated. The results demonstrate the superior performance of the BCCF-Net compared to other state-of-the-art algorithms. The developed framework holds practical application in clinical settings, allowing for the refined diagnosis of cardiac arrhythmias through ECG signal analysis.
Collapse
Affiliation(s)
- Weimin Wen
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Hongyi Zhang
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Zidong Wang
- Department of Computer Science, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Xingen Gao
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Peishu Wu
- Department of Instrumental and Electrical Engineering, Xiamen University, Fujian 361005, China
| | - Juqiang Lin
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Nianyin Zeng
- Department of Instrumental and Electrical Engineering, Xiamen University, Fujian 361005, China.
| |
Collapse
|
10
|
Baddah W, Qasem HA, Alsabry A, Hussein obaid AM, abdo Mohammed A, Hanash FE. Predicting Heart Disease Using Machine Learning Techniques on Electronic Health Records Data. 2023 3RD INTERNATIONAL CONFERENCE ON EMERGING SMART TECHNOLOGIES AND APPLICATIONS (ESMARTA) 2023:1-8. [DOI: 10.1109/esmarta59349.2023.10293622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Waheeb Baddah
- Azal University for Human Development,Department of Information Technology,Sana'a,Yemen
| | - Hamzah Ali Qasem
- International University of Technology Twintech, 21 September university of medical and applied sciences,Sana'a,Yemen
| | - Ayman Alsabry
- International University of Technology Twintech,Department of Computer Science,Sana'a,Yemen
| | | | - Awadh abdo Mohammed
- biomedical equipments technology, 21 September university of medical and applied sciences,Sana'a,Yemen
| | - F. E. Hanash
- International University of Technology Twintech,Sana'a,Yemen
| |
Collapse
|
11
|
Ansari Y, Mourad O, Qaraqe K, Serpedin E. Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017-2023. Front Physiol 2023; 14:1246746. [PMID: 37791347 PMCID: PMC10542398 DOI: 10.3389/fphys.2023.1246746] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Cardiovascular diseases are a leading cause of mortality globally. Electrocardiography (ECG) still represents the benchmark approach for identifying cardiac irregularities. Automatic detection of abnormalities from the ECG can aid in the early detection, diagnosis, and prevention of cardiovascular diseases. Deep Learning (DL) architectures have been successfully employed for arrhythmia detection and classification and offered superior performance to traditional shallow Machine Learning (ML) approaches. This survey categorizes and compares the DL architectures used in ECG arrhythmia detection from 2017-2023 that have exhibited superior performance. Different DL models such as Convolutional Neural Networks (CNNs), Multilayer Perceptrons (MLPs), Transformers, and Recurrent Neural Networks (RNNs) are reviewed, and a summary of their effectiveness is provided. This survey provides a comprehensive roadmap to expedite the acclimation process for emerging researchers willing to develop efficient algorithms for detecting ECG anomalies using DL models. Our tailored guidelines bridge the knowledge gap allowing newcomers to align smoothly with the prevailing research trends in ECG arrhythmia detection. We shed light on potential areas for future research and refinement in model development and optimization, intending to stimulate advancement in ECG arrhythmia detection and classification.
Collapse
Affiliation(s)
- Yaqoob Ansari
- ECEN Program, Texas A&M University at Qatar, Doha, Qatar
| | | | - Khalid Qaraqe
- ECEN Program, Texas A&M University at Qatar, Doha, Qatar
| | - Erchin Serpedin
- ECEN Department, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Ahmed AES, Abbas Q, Daadaa Y, Qureshi I, Perumal G, Ibrahim MEA. A Residual-Dense-Based Convolutional Neural Network Architecture for Recognition of Cardiac Health Based on ECG Signals. SENSORS (BASEL, SWITZERLAND) 2023; 23:7204. [PMID: 37631741 PMCID: PMC10458913 DOI: 10.3390/s23167204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Cardiovascular disorders are often diagnosed using an electrocardiogram (ECG). It is a painless method that mimics the cyclical contraction and relaxation of the heart's muscles. By monitoring the heart's electrical activity, an ECG can be used to identify irregular heartbeats, heart attacks, cardiac illnesses, or enlarged hearts. Numerous studies and analyses of ECG signals to identify cardiac problems have been conducted during the past few years. Although ECG heartbeat classification methods have been presented in the literature, especially for unbalanced datasets, they have not proven to be successful in recognizing some heartbeat categories with high performance. This study uses a convolutional neural network (CNN) model to combine the benefits of dense and residual blocks. The objective is to leverage the benefits of residual and dense connections to enhance information flow, gradient propagation, and feature reuse, ultimately improving the model's performance. This proposed model consists of a series of residual-dense blocks interleaved with optional pooling layers for downsampling. A linear support vector machine (LSVM) classified heartbeats into five classes. This makes it easier to learn and represent features from ECG signals. We first denoised the gathered ECG data to correct issues such as baseline drift, power line interference, and motion noise. The impacts of the class imbalance are then offset by resampling techniques that denoise ECG signals. An RD-CNN algorithm is then used to categorize the ECG data for the various cardiac illnesses using the retrieved characteristics. On two benchmarked datasets, we conducted extensive simulations and assessed several performance measures. On average, we have achieved an accuracy of 98.5%, a sensitivity of 97.6%, a specificity of 96.8%, and an area under the receiver operating curve (AUC) of 0.99. The effectiveness of our suggested method for detecting heart disease from ECG data was compared with several recently presented algorithms. The results demonstrate that our method is lightweight and practical, qualifying it for continuous monitoring applications in clinical settings for automated ECG interpretation to support cardiologists.
Collapse
Affiliation(s)
- Alaa E. S. Ahmed
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
- Electrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo 11629, Egypt
| | - Qaisar Abbas
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
| | - Yassine Daadaa
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
| | - Imran Qureshi
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
| | - Ganeshkumar Perumal
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
| | - Mostafa E. A. Ibrahim
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
- Department of Electrical Engineering, Benha Faculty of Engineering, Benha University, Benha 13518, Qalubia, Egypt
| |
Collapse
|
13
|
Cuevas-Chávez A, Hernández Y, Ortiz-Hernandez J, Sánchez-Jiménez E, Ochoa-Ruiz G, Pérez J, González-Serna G. A Systematic Review of Machine Learning and IoT Applied to the Prediction and Monitoring of Cardiovascular Diseases. Healthcare (Basel) 2023; 11:2240. [PMID: 37628438 PMCID: PMC10454027 DOI: 10.3390/healthcare11162240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
According to the Pan American Health Organization, cardiovascular disease is the leading cause of death worldwide, claiming an estimated 17.9 million lives each year. This paper presents a systematic review to highlight the use of IoT, IoMT, and machine learning to detect, predict, or monitor cardiovascular disease. We had a final sample of 164 high-impact journal papers, focusing on two categories: cardiovascular disease detection using IoT/IoMT technologies and cardiovascular disease using machine learning techniques. For the first category, we found 82 proposals, while for the second, we found 85 proposals. The research highlights list of IoT/IoMT technologies, machine learning techniques, datasets, and the most discussed cardiovascular diseases. Neural networks have been popularly used, achieving an accuracy of over 90%, followed by random forest, XGBoost, k-NN, and SVM. Based on the results, we conclude that IoT/IoMT technologies can predict cardiovascular diseases in real time, ensemble techniques obtained one of the best performances in the accuracy metric, and hypertension and arrhythmia were the most discussed diseases. Finally, we identified the lack of public data as one of the main obstacles for machine learning approaches for cardiovascular disease prediction.
Collapse
Affiliation(s)
- Alejandra Cuevas-Chávez
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| | - Yasmín Hernández
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| | - Javier Ortiz-Hernandez
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| | - Eduardo Sánchez-Jiménez
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| | - Gilberto Ochoa-Ruiz
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| | - Joaquín Pérez
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| | - Gabriel González-Serna
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| |
Collapse
|
14
|
Alluhaidan AS, Maashi M, Arasi MA, Salama AS, Assiri M, Alneil AA. Mud Ring Optimization Algorithm with Deep Learning Model for Disease Diagnosis on ECG Monitoring System. SENSORS (BASEL, SWITZERLAND) 2023; 23:6675. [PMID: 37571459 PMCID: PMC10422622 DOI: 10.3390/s23156675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Due to the tremendous growth of the Internet of Things (IoT), sensing technologies, and wearables, the quality of medical services has been enhanced, and it has shifted from standard medical-based health services to real time. Commonly, the sensors can be combined as numerous clinical devices to store the biosignals generated by the physiological actions of the human body. Meanwhile, a familiar method with a noninvasive and rapid biomedical electrocardiogram (ECG) signal can be used to diagnose and examine cardiovascular disease (CVD). As the growing number of patients is destroying the classification outcome because of major changes in the ECG signal patterns among numerous patients, computer-assisted automatic diagnostic tools are needed for ECG signal classification. Therefore, this study presents a mud ring optimization technique with a deep learning-based ECG signal classification (MROA-DLECGSC) technique. The presented MROA-DLECGSC approach recognizes the presence of heart disease using ECG signals. To accomplish this, the MROA-DLECGSC technique initially preprocessed the ECG signals to transform them into a uniform format. In addition, the Stacked Autoencoder Topographic Map (SAETM) approach was utilized for the classification of ECG signals to identify the presence of CVDs. Finally, the MROA was applied as a hyperparameter optimizer, which assisted in accomplishing enhanced performance. The experimental outcomes of the MROA-DLECGSC algorithm were tested on the benchmark database, and the results show the better performance of the MROA-DLECGSC methodology compared to other recent algorithms.
Collapse
Affiliation(s)
- Ala Saleh Alluhaidan
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mashael Maashi
- Department of Software Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 103786, Riyadh 11543, Saudi Arabia
| | - Munya A. Arasi
- Department of Computer Science, College of Science and Arts in RijalAlmaa, King Khalid University, Abha 62529, Saudi Arabia
| | - Ahmed S. Salama
- Department of Electrical Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo 11845, Egypt
| | - Mohammed Assiri
- Department of Electrical Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo 11845, Egypt
| | - Amani A. Alneil
- Department of Computer Science, College of Sciences and Humanities-Aflaj, Prince Sattam bin Abdulaziz University, Aflaj 16273, Saudi Arabia
- Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| |
Collapse
|