1
|
Reddy JV, Raudenbush K, Papoutsakis ET, Ierapetritou M. Cell-culture process optimization via model-based predictions of metabolism and protein glycosylation. Biotechnol Adv 2023; 67:108179. [PMID: 37257729 DOI: 10.1016/j.biotechadv.2023.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
In order to meet the rising demand for biologics and become competitive on the developing biosimilar market, there is a need for process intensification of biomanufacturing processes. Process development of biologics has historically relied on extensive experimentation to develop and optimize biopharmaceutical manufacturing. Experimentation to optimize media formulations, feeding schedules, bioreactor operations and bioreactor scale up is expensive, labor intensive and time consuming. Mathematical modeling frameworks have the potential to enable process intensification while reducing the experimental burden. This review focuses on mathematical modeling of cellular metabolism and N-linked glycosylation as applied to upstream manufacturing of biologics. We review developments in the field of modeling cellular metabolism of mammalian cells using kinetic and stoichiometric modeling frameworks along with their applications to simulate, optimize and improve mechanistic understanding of the process. Interest in modeling N-linked glycosylation has led to the creation of various types of parametric and non-parametric models. Most published studies on mammalian cell metabolism have performed experiments in shake flasks where the pH and dissolved oxygen cannot be controlled. Efforts to understand and model the effect of bioreactor-specific parameters such as pH, dissolved oxygen, temperature, and bioreactor heterogeneity are critically reviewed. Most modeling efforts have focused on the Chinese Hamster Ovary (CHO) cells, which are most commonly used to produce monoclonal antibodies (mAbs). However, these modeling approaches can be generalized and applied to any mammalian cell-based manufacturing platform. Current and potential future applications of these models for Vero cell-based vaccine manufacturing, CAR-T cell therapies, and viral vector manufacturing are also discussed. We offer specific recommendations for improving the applicability of these models to industrially relevant processes.
Collapse
Affiliation(s)
- Jayanth Venkatarama Reddy
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA
| | - Katherine Raudenbush
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA; Delaware Biotechnology Institute, Department of Biological Sciences, University of Delaware, USA.
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA.
| |
Collapse
|
2
|
Pinto J, Ramos JRC, Costa RS, Rossell S, Dumas P, Oliveira R. Hybrid deep modeling of a CHO-K1 fed-batch process: combining first-principles with deep neural networks. Front Bioeng Biotechnol 2023; 11:1237963. [PMID: 37744245 PMCID: PMC10515724 DOI: 10.3389/fbioe.2023.1237963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: Hybrid modeling combining First-Principles with machine learning is becoming a pivotal methodology for Biopharma 4.0 enactment. Chinese Hamster Ovary (CHO) cells, being the workhorse for industrial glycoproteins production, have been the object of several hybrid modeling studies. Most previous studies pursued a shallow hybrid modeling approach based on three-layered Feedforward Neural Networks (FFNNs) combined with macroscopic material balance equations. Only recently, the hybrid modeling field is incorporating deep learning into its framework with significant gains in descriptive and predictive power. Methods: This study compares, for the first time, deep and shallow hybrid modeling in a CHO process development context. Data of 24 fed-batch cultivations of a CHO-K1 cell line expressing a target glycoprotein, comprising 30 measured state variables over time, were used to compare both methodologies. Hybrid models with varying FFNN depths (3-5 layers) were systematically compared using two training methodologies. The classical training is based on the Levenberg-Marquardt algorithm, indirect sensitivity equations and cross-validation. The deep learning is based on the Adaptive Moment Estimation Method (ADAM), stochastic regularization and semidirect sensitivity equations. Results and conclusion: The results point to a systematic generalization improvement of deep hybrid models over shallow hybrid models. Overall, the training and testing errors decreased by 14.0% and 23.6% respectively when applying the deep methodology. The Central Processing Unit (CPU) time for training the deep hybrid model increased by 31.6% mainly due to the higher FFNN complexity. The final deep hybrid model is shown to predict the dynamics of the 30 state variables within the error bounds in every test experiment. Notably, the deep hybrid model could predict the metabolic shifts in key metabolites (e.g., lactate, ammonium, glutamine and glutamate) in the test experiments. We expect deep hybrid modeling to accelerate the deployment of high-fidelity digital twins in the biopharma sector in the near future.
Collapse
Affiliation(s)
- José Pinto
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - João R. C. Ramos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Rafael S. Costa
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | | | | | - Rui Oliveira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
3
|
Iglesias CF, Ristovski M, Bolic M, Cuperlovic-Culf M. rAAV Manufacturing: The Challenges of Soft Sensing during Upstream Processing. Bioengineering (Basel) 2023; 10:bioengineering10020229. [PMID: 36829723 PMCID: PMC9951952 DOI: 10.3390/bioengineering10020229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is the most effective viral vector technology for directly translating the genomic revolution into medicinal therapies. However, the manufacturing of rAAV viral vectors remains challenging in the upstream processing with low rAAV yield in large-scale production and high cost, limiting the generalization of rAAV-based treatments. This situation can be improved by real-time monitoring of critical process parameters (CPP) that affect critical quality attributes (CQA). To achieve this aim, soft sensing combined with predictive modeling is an important strategy that can be used for optimizing the upstream process of rAAV production by monitoring critical process variables in real time. However, the development of soft sensors for rAAV production as a fast and low-cost monitoring approach is not an easy task. This review article describes four challenges and critically discusses the possible solutions that can enable the application of soft sensors for rAAV production monitoring. The challenges from a data scientist's perspective are (i) a predictor variable (soft-sensor inputs) set without AAV viral titer, (ii) multi-step forecasting, (iii) multiple process phases, and (iv) soft-sensor development composed of the mechanistic model.
Collapse
Affiliation(s)
| | - Milica Ristovski
- Faculty of Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Miodrag Bolic
- Faculty of Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Miroslava Cuperlovic-Culf
- Digital Technologies Research Center, National Research Council, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
4
|
Mao L, Schneider JW, Robinson AS. Progress toward rapid, at-line N-glycosylation detection and control for recombinant protein expression. Curr Opin Biotechnol 2022; 78:102788. [PMID: 36126382 DOI: 10.1016/j.copbio.2022.102788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Proteins continue to represent a large fraction of the therapeutics market, reaching over a hundred billion dollars in market size globally. One key feature of protein modification that can affect both structure and function is the addition of glycosylation following protein folding, leading to regulatory requirements for the accurate assessment of protein attributes, including glycan structures. The non-template-driven, innately heterogeneous N-glycosylation process thus requires accurate detection to robustly generate protein therapies. A challenge exists in the timely detection of protein glycosylation without labor-intensive manipulation. In this article, we discuss progress toward N-glycoprotein control, focusing on novel control strategies and the advancement of rapid, high-throughput analysis methods.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - James W Schneider
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
5
|
Li H, Chiang AWT, Lewis NE. Artificial intelligence in the analysis of glycosylation data. Biotechnol Adv 2022; 60:108008. [PMID: 35738510 PMCID: PMC11157671 DOI: 10.1016/j.biotechadv.2022.108008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022]
Abstract
Glycans are complex, yet ubiquitous across biological systems. They are involved in diverse essential organismal functions. Aberrant glycosylation may lead to disease development, such as cancer, autoimmune diseases, and inflammatory diseases. Glycans, both normal and aberrant, are synthesized using extensive glycosylation machinery, and understanding this machinery can provide invaluable insights for diagnosis, prognosis, and treatment of various diseases. Increasing amounts of glycomics data are being generated thanks to advances in glycoanalytics technologies, but to maximize the value of such data, innovations are needed for analyzing and interpreting large-scale glycomics data. Artificial intelligence (AI) provides a powerful analysis toolbox in many scientific fields, and here we review state-of-the-art AI approaches on glycosylation analysis. We further discuss how models can be analyzed to gain mechanistic insights into glycosylation machinery and how the machinery shapes glycans under different scenarios. Finally, we propose how to leverage the gained knowledge for developing predictive AI-based models of glycosylation. Thus, guiding future research of AI-based glycosylation model development will provide valuable insights into glycosylation and glycan machinery.
Collapse
Affiliation(s)
- Haining Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Puranik A, Saldanha M, Chirmule N, Dandekar P, Jain R. Advanced strategies in glycosylation prediction and control during biopharmaceutical development: Avenues toward Industry 4.0. Biotechnol Prog 2022; 38:e3283. [PMID: 35752935 DOI: 10.1002/btpr.3283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Glycosylation has been shown to define the safety and efficacy of biopharmaceuticals, thus classified as a critical quality attribute. However, controlling glycan heterogeneity has always been a major challenge owing to the multi-variate factors that govern the glycosylation process. Conventional approaches for controlling glycosylation such as gene editing and metabolic control have succeeded in obtaining desired glycan profiles in accordance with the Quality by Design paradigm. Nonetheless, the development of smart algorithms and omics-enabled complete cell characterization have made it possible to predict glycan profiles beforehand, and manipulate process variables accordingly. This review thus discusses the various approaches available for control and prediction of glycosylation in biopharmaceuticals. Further, the futuristic goal of integrating such technologies is discussed in order to attain an automated and digitized continuous bioprocess for control of glycosylation. Given, control of a process as complex as glycosylation requires intense monitoring intervention, we examine the current technologies that enable automation. Finally, we discuss the challenges and the technological gap that currently limits incorporation of an automated process in routine bio-manufacturing, with a glimpse into the economic bearing. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amita Puranik
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Marianne Saldanha
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| | | | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|