1
|
Androshchuk V, Montarello N, Lahoti N, Hill SJ, Zhou C, Patterson T, Redwood S, Niederer S, Lamata P, De Vecchi A, Rajani R. Evolving capabilities of computed tomography imaging for transcatheter valvular heart interventions - new opportunities for precision medicine. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03247-z. [PMID: 39347934 DOI: 10.1007/s10554-024-03247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
The last decade has witnessed a substantial growth in percutaneous treatment options for heart valve disease. The development in these innovative therapies has been mirrored by advances in multi-detector computed tomography (MDCT). MDCT plays a central role in obtaining detailed pre-procedural anatomical information, helping to inform clinical decisions surrounding procedural planning, improve clinical outcomes and prevent potential complications. Improvements in MDCT image acquisition and processing techniques have led to increased application of advanced analytics in routine clinical care. Workflow implementation of patient-specific computational modeling, fluid dynamics, 3D printing, extended reality, extracellular volume mapping and artificial intelligence are shaping the landscape for delivering patient-specific care. This review will provide an insight of key innovations in the field of MDCT for planning transcatheter heart valve interventions.
Collapse
Affiliation(s)
- Vitaliy Androshchuk
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
- Guy's & St Thomas' NHS Foundation Trust, King's College London, St Thomas' Hospital, The Reyne Institute, 4th Floor, Lambeth Wing, London, SE1 7EH, UK.
| | - Natalie Montarello
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Nishant Lahoti
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Samuel Joseph Hill
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Can Zhou
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Tiffany Patterson
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Simon Redwood
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Adelaide De Vecchi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ronak Rajani
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Piazzese C, Carminati MC, Krause R, Auricchio A, Weinert L, Gripari P, Tamborini G, Pontone G, Andreini D, Lang RM, Pepi M, Caiani EG. 3D right ventricular endocardium segmentation in cardiac magnetic resonance images by using a new inter-modality statistical shape modelling method. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Simpson JM, van den Bosch A. EDUCATIONAL SERIES IN CONGENITAL HEART DISEASE: Three-dimensional echocardiography in congenital heart disease. Echo Res Pract 2019; 6:R75-R86. [PMID: 31026813 PMCID: PMC6528493 DOI: 10.1530/erp-18-0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional echocardiography is a valuable tool for the assessment of cardiac function where it permits calculation of chamber volume and function. The anatomy of valvar and septal structures can be presented in unique and intuitive ways to enhance surgical planning. Guidance of interventional procedures using the technique has now become established in many clinical settings. Enhancements of image processing to include intracavity flow, image fusion and true 3D displays look set to further improve the contribution of this modality to care of the patient with congenital heart disease.
Collapse
Affiliation(s)
- John M Simpson
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Annemien van den Bosch
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
De Vecchi A, Marlevi D, Nordsletten DA, Ntalas I, Leipsic J, Bapat V, Rajani R, Niederer SA. Left ventricular outflow obstruction predicts increase in systolic pressure gradients and blood residence time after transcatheter mitral valve replacement. Sci Rep 2018; 8:15540. [PMID: 30341365 PMCID: PMC6195528 DOI: 10.1038/s41598-018-33836-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/01/2018] [Indexed: 11/14/2022] Open
Abstract
Left ventricular outflow tract (LVOT) obstruction is a relatively common consequence of transcatheter mitral valve replacement (TMVR). Although LVOT obstruction is associated with heart failure and adverse remodelling, its effects upon left ventricular hemodynamics remain poorly characterised. This study uses validated computational models to identify the LVOT obstruction degree that causes significant changes in ventricular hemodynamics after TMVR. Seven TMVR patients underwent personalised flow simulations based on pre-procedural imaging data. Different virtual valve configurations were simulated in each case, for a total of 32 simulations, and the resulting obstruction degree was correlated with pressure gradients and flow residence times. These simulations identified a threshold LVOT obstruction degree of 35%, beyond which significant deterioration of systolic function was observed. The mean increase from baseline (pre-TMVR) in the peak systolic pressure gradient rose from 5.7% to 30.1% above this threshold value. The average blood volume staying inside the ventricle for more than two cycles also increased from 4.4% to 57.5% for obstruction degrees above 35%, while the flow entering and leaving the ventricle within one cycle decreased by 13.9%. These results demonstrate the unique ability of modelling to predict the hemodynamic consequences of TMVR and to assist in the clinical decision-making process.
Collapse
Affiliation(s)
- Adelaide De Vecchi
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical Engineering, King's College London, King's Health Partners, St Thomas Hospital, London, SE1 7EH, UK.
| | - David Marlevi
- School of Technology and Health, KTH Royal Institute of Technology, Hälsovägen 11C, 141 52, Huddinge, Sweden
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 17177, Stockholm, Sweden
| | - David A Nordsletten
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical Engineering, King's College London, King's Health Partners, St Thomas Hospital, London, SE1 7EH, UK
| | - Ioannis Ntalas
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jonathon Leipsic
- Department of Radiology and Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vinayak Bapat
- Department of Surgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ronak Rajani
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Steven A Niederer
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical Engineering, King's College London, King's Health Partners, St Thomas Hospital, London, SE1 7EH, UK
| |
Collapse
|
5
|
Karabelas E, Gsell MAF, Augustin CM, Marx L, Neic A, Prassl AJ, Goubergrits L, Kuehne T, Plank G. Towards a Computational Framework for Modeling the Impact of Aortic Coarctations Upon Left Ventricular Load. Front Physiol 2018; 9:538. [PMID: 29892227 PMCID: PMC5985756 DOI: 10.3389/fphys.2018.00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/26/2018] [Indexed: 01/04/2023] Open
Abstract
Computational fluid dynamics (CFD) models of blood flow in the left ventricle (LV) and aorta are important tools for analyzing the mechanistic links between myocardial deformation and flow patterns. Typically, the use of image-based kinematic CFD models prevails in applications such as predicting the acute response to interventions which alter LV afterload conditions. However, such models are limited in their ability to analyze any impacts upon LV load or key biomarkers known to be implicated in driving remodeling processes as LV function is not accounted for in a mechanistic sense. This study addresses these limitations by reporting on progress made toward a novel electro-mechano-fluidic (EMF) model that represents the entire physics of LV electromechanics (EM) based on first principles. A biophysically detailed finite element (FE) model of LV EM was coupled with a FE-based CFD solver for moving domains using an arbitrary Eulerian-Lagrangian (ALE) formulation. Two clinical cases of patients suffering from aortic coarctations (CoA) were built and parameterized based on clinical data under pre-treatment conditions. For one patient case simulations under post-treatment conditions after geometric repair of CoA by a virtual stenting procedure were compared against pre-treatment results. Numerical stability of the approach was demonstrated by analyzing mesh quality and solver performance under the significantly large deformations of the LV blood pool. Further, computational tractability and compatibility with clinical time scales were investigated by performing strong scaling benchmarks up to 1536 compute cores. The overall cost of the entire workflow for building, fitting and executing EMF simulations was comparable to those reported for image-based kinematic models, suggesting that EMF models show potential of evolving into a viable clinical research tool.
Collapse
Affiliation(s)
- Elias Karabelas
- Computational Cardiology Laboratory, Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Matthias A F Gsell
- Computational Cardiology Laboratory, Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Christoph M Augustin
- Computational Cardiology Laboratory, Institute of Biophysics, Medical University of Graz, Graz, Austria.,Shadden Research Group, Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Laura Marx
- Computational Cardiology Laboratory, Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Aurel Neic
- Computational Cardiology Laboratory, Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Anton J Prassl
- Computational Cardiology Laboratory, Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Leonid Goubergrits
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Berlin, Germany.,Institute for Imaging Science and Computational Modeling in Cardiovascular Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Titus Kuehne
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Berlin, Germany.,Institute for Imaging Science and Computational Modeling in Cardiovascular Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Gernot Plank
- Computational Cardiology Laboratory, Institute of Biophysics, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Post-operative ventricular flow dynamics following atrioventricular valve surgical and device therapies: A review. Med Eng Phys 2018; 54:1-13. [DOI: 10.1016/j.medengphy.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/17/2017] [Accepted: 01/28/2018] [Indexed: 01/26/2023]
|
7
|
Queirós S, Vilaça JL, Morais P, Fonseca JC, D'hooge J, Barbosa D. Fast left ventricle tracking using localized anatomical affine optical flow. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 28208231 DOI: 10.1002/cnm.2871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
In daily clinical cardiology practice, left ventricle (LV) global and regional function assessment is crucial for disease diagnosis, therapy selection, and patient follow-up. Currently, this is still a time-consuming task, spending valuable human resources. In this work, a novel fast methodology for automatic LV tracking is proposed based on localized anatomically constrained affine optical flow. This novel method can be combined to previously proposed segmentation frameworks or manually delineated surfaces at an initial frame to obtain fully delineated datasets and, thus, assess both global and regional myocardial function. Its feasibility and accuracy were investigated in 3 distinct public databases, namely in realistically simulated 3D ultrasound, clinical 3D echocardiography, and clinical cine cardiac magnetic resonance images. The method showed accurate tracking results in all databases, proving its applicability and accuracy for myocardial function assessment. Moreover, when combined to previous state-of-the-art segmentation frameworks, it outperformed previous tracking strategies in both 3D ultrasound and cardiac magnetic resonance data, automatically computing relevant cardiac indices with smaller biases and narrower limits of agreement compared to reference indices. Simultaneously, the proposed localized tracking method showed to be suitable for online processing, even for 3D motion assessment. Importantly, although here evaluated for LV tracking only, this novel methodology is applicable for tracking of other target structures with minimal adaptations.
Collapse
Affiliation(s)
- Sandro Queirós
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Lab on Cardiovascular Imaging and Dynamics, Dept. of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal
| | - João L Vilaça
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- DIGARC-Polytechnic Institute of Cávado and Ave (IPCA), Barcelos, Portugal
| | - Pedro Morais
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Lab on Cardiovascular Imaging and Dynamics, Dept. of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- INEGI, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Jaime C Fonseca
- Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal
| | - Jan D'hooge
- Lab on Cardiovascular Imaging and Dynamics, Dept. of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Daniel Barbosa
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Larsson D, Spuhler JH, Petersson S, Nordenfur T, Colarieti-Tosti M, Hoffman J, Winter R, Larsson M. Patient-Specific Left Ventricular Flow Simulations From Transthoracic Echocardiography: Robustness Evaluation and Validation Against Ultrasound Doppler and Magnetic Resonance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2261-2275. [PMID: 28742031 DOI: 10.1109/tmi.2017.2718218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of medical imaging with computational fluid dynamics (CFD) has enabled the study of 3-D blood flow on a patient-specific level. However, with models based on gated high-resolution data, the study of transient flows, and any model implementation into routine cardiac care, is challenging. This paper presents a novel pathway for patient-specific CFD modelling of the left ventricle (LV), using 4-D transthoracic echocardiography (TTE) as input modality. To evaluate the clinical usability, two sub-studies were performed. First, a robustness evaluation was performed, where repeated models with alternating input variables were generated for six subjects and changes in simulated output quantified. Second, a validation study was carried out, where the pathway accuracy was evaluated against pulsed-wave Doppler (100 subjects), and 2-D through-plane phase-contrast magnetic resonance imaging measurements over seven intraventricular planes (6 subjects). The robustness evaluation indicated a model deviation of <12%, with highest regional and temporal deviations at apical segments and at peak systole, respectively. The validation study showed an error of <11% (velocities <10 cm/s) for all subjects, with no significant regional or temporal differences observed. With the patient-specific pathway shown to provide robust output with high accuracy, and with the pathway dependent only on 4-D TTE, the method has a high potential to be used within future clinical studies on 3-D intraventricular flow patterns. To this, future model developments in the form of e.g., anatomically accurate LV valves may further enhance the clinical value of the simulations.
Collapse
|