1
|
Wang Z, Zhou J, Peng K. The Potential of Multi-Task Learning in CFDST Design: Load-Bearing Capacity Design with Three MTL Models. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1994. [PMID: 38730801 PMCID: PMC11084436 DOI: 10.3390/ma17091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Concrete-filled double steel tubes (CFDSTs) are a load-bearing structure of composite materials. By combining concrete and steel pipes in a nested structure, the performance of the column will be greatly improved. The performance of CFDSTs is closely related to their design. However, existing codes for CFDST design often focus on how to verify the reliability of a design, but specific design parameters cannot be directly provided. As a machine learning technique that can simultaneously learn multiple related tasks, multi-task learning (MTL) has great potential in the structural design of CFDSTs. Based on 227 uniaxial compression cases of CFDSTs collected from the literature, this paper utilized three multi-task models (multi-task Lasso, VSTG, and MLS-SVR) separately to provide multiple parameters for CFDST design. To evaluate the accuracy of models, four statistical indicators were adopted (R2, RMSE, RRMSE, and ρ). The experimental results indicated that there was a non-linear relationship among the parameters of CFDSTs. Nevertheless, MLS-SVR was still able to provide an accurate set of design parameters. The coefficient matrices of two linear models, multi-task Lasso and VSTG, revealed the potential connection among CFDST parameters. The latent-task matrix V in VSTG divided the prediction tasks of inner tube diameter, thickness, strength, and concrete strength into three groups. In addition, the limitations of this study and future work are also summarized. This paper provides new ideas for the design of CFDSTs and the study of related codes.
Collapse
Affiliation(s)
| | - Jian Zhou
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
| | - Kang Peng
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
2
|
El-Sappagh S, Alonso-Moral JM, Abuhmed T, Ali F, Bugarín-Diz A. Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Zhang X, Wang Y, Zhu L, Chen H, Li H, Wu L. Robust variable structure discovery based on tilted empirical risk minimization. APPL INTELL 2023. [DOI: 10.1007/s10489-022-04409-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Zhang Y, Liu T, Lanfranchi V, Yang P. Explainable Tensor Multi-Task Ensemble Learning Based on Brain Structure Variation for Alzheimer's Disease Dynamic Prediction. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 11:1-12. [PMID: 36478772 PMCID: PMC9721355 DOI: 10.1109/jtehm.2022.3219775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Machine learning approaches for predicting Alzheimer's disease (AD) progression can substantially assist researchers and clinicians in developing effective AD preventive and treatment strategies. This study proposes a novel machine learning algorithm to predict the AD progression utilising a multi-task ensemble learning approach. Specifically, we present a novel tensor multi-task learning (MTL) algorithm based on similarity measurement of spatio-temporal variability of brain biomarkers to model AD progression. In this model, the prediction of each patient sample in the tensor is set as one task, where all tasks share a set of latent factors obtained through tensor decomposition. Furthermore, as subjects have continuous records of brain biomarker testing, the model is extended to ensemble the subjects' temporally continuous prediction results utilising a gradient boosting kernel to find more accurate predictions. We have conducted extensive experiments utilising data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to evaluate the performance of the proposed algorithm and model. Results demonstrate that the proposed model have superior accuracy and stability in predicting AD progression compared to benchmarks and state-of-the-art multi-task regression methods in terms of the Mini Mental State Examination (MMSE) questionnaire and The Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) cognitive scores. Brain biomarker correlation information can be utilised to identify variations in individual brain structures and the model can be utilised to effectively predict the progression of AD with magnetic resonance imaging (MRI) data and cognitive scores of AD patients at different stages.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Computer ScienceThe University of Sheffield Sheffield S10 2TN U.K
| | - Tong Liu
- Department of Computer ScienceThe University of Sheffield Sheffield S10 2TN U.K
| | | | - Po Yang
- Department of Computer ScienceThe University of Sheffield Sheffield S10 2TN U.K
| |
Collapse
|
5
|
Zhang Y, Zhou M, Liu T, Lanfranchi V, Yang P. Spatio-temporal Tensor Multi-Task Learning for Predicting Alzheimer's Disease in a Longitudinal study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:979-985. [PMID: 36086566 DOI: 10.1109/embc48229.2022.9870882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The utilisation of machine learning techniques to predict Alzheimer's Disease (AD) progression will substantially assist researchers and clinicians in establishing effective AD prevention and treatment strategies. In this research, we present a novel Multi-Task Learning (MTL) model for modelling AD progression based on tensor formation from spatio-temporal similarity measures of brain biomarkers. In this model, each patient sample's prediction in the tensor is assigned to a task, with each task sharing a set of latent factors acquired via tensor decomposition. To further improve the performance of the model, we present a novel regularisation term which utilises the convex combination of disease progression to modify longitudinal stability and ensure that two regression models have a minimal variation at successive time points. The model can be utilised to effectively predict AD progression with magnetic resonance imaging (MRI) data and cognitive scores of AD patients at various stages. We conducted extensive experiments to evaluate the performance for the proposed model and algorithm utilising data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Compared to single-task and state-of-the-art multi-task regression techniques, our proposed method has greater accuracy and stability for predicting AD progress in terms of root mean square error, with an average reduction of 2.60 compared to single-task regression methods and 1.17 compared to multi-task regression methods in the Mini-Mental State Examination (MMSE) questionnaire; with an average reduction of 5.08 compared to single-task regression methods and 2.71 compared to multi-task regression methods in the Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog).
Collapse
|
6
|
Tang S, Cao P, Huang M, Liu X, Zaiane O. Dual feature correlation guided multi-task learning for Alzheimer's disease prediction. Comput Biol Med 2022; 140:105090. [PMID: 34875406 DOI: 10.1016/j.compbiomed.2021.105090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease affecting cognition functions. Predicting the cognitive scores from neuroimage measures and identifying relevant imaging biomarkers are important research topics in the study of AD. Despite machine learning algorithms having many successful applications, the prediction model suffers from the so-called curse of dimensionality. Multi-task feature learning (MTFL) has helped tackle this problem incorporating the correlations among multiple clinical cognitive scores. However, MTFL neglects the inherent correlation among brain imaging measures. In order to better predict the cognitive scores and identify stable biomarkers, we first propose a generalized multi-task formulation framework that incorporates the task and feature correlation structures simultaneously. Second, we present a novel feature-aware sparsity-inducing norm (FAS-norm) penalty to incorporate a useful correlation between brain regions by exploiting correlations among features. Three multi-task learning models that incorporate the FAS-norm penalty are proposed following our framework. Finally, the algorithm based on the alternating direction method of multipliers (ADMM) is developed to optimize the non-smooth problems. We comprehensively evaluate the proposed models on the cross-sectional and longitudinal Alzheimer's disease neuroimaging initiative datasets. The inputs are the thickness measures and the volume measures of the cortical regions of interest. Compared with MTFL, our methods achieve an average decrease of 4.28% in overall error in the cross-sectional analysis and an average decrease of 7.97% in the Alzheimer's Disease Assessment Scale cognitive total score longitudinal analysis. Moreover, our methods identify sensitive and stable biomarkers to physicians, such as the hippocampus, lateral ventricle, and corpus callosum.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Information Science and Engineering, State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Peng Cao
- College of Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Min Huang
- College of Information Science and Engineering, State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Xiaoli Liu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Osmar Zaiane
- Department of Computing Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Cheng B, Zhu B, Pu S. Multi-auxiliary domain transfer learning for diagnosis of MCI conversion. Neurol Sci 2021; 43:1721-1739. [PMID: 34510292 DOI: 10.1007/s10072-021-05568-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/14/2021] [Indexed: 01/18/2023]
Abstract
In the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has a higher risk of progression to AD, so the prediction of whether an MCI subject will progress to AD (known as progressive MCI, PMCI) or not (known as stable MCI, SMCI) within a certain period is particularly important in practice. It is known that such a task could benefit from jointly learning-related auxiliary tasks such as differentiating AD from PMCI or PMCI from normal control (NC) in order to take full advantage of their shared commonality. However, few existing methods along this line fully consider the correlations between the target and auxiliary tasks according to the clinical practice of AD pathology for diagnosis. To deal with this problem, in this paper, treating each task domain as a different one, we borrow the idea from transfer learning and propose a novel multi-auxiliary domain transfer learning (MaDTL) method, which explicitly utilizes the correlations between the target domain (task) and multi-auxiliary domains (tasks) according to the clinical practice. Specifically, the proposed MaDTL method incorporates two key modules. The first one is a multi-auxiliary domain transfer-based feature selection (MaDTFS) model, which can select a discriminative feature subset shared by the target domain and the multi-auxiliary domains. In the MaDTFS model, to combine more training data from multi-auxiliary domains and simultaneously suppress the negative effects resulting from the irrelevant parts of multi-auxiliary domains, we proposed a sparse group correlation Lasso that includes a proposed group correlation Lasso penalty (i.e., [Formula: see text]) and a proposed correlation Lasso penalty (i.e., [Formula: see text]). The second module in MaDTL is a multi-auxiliary domain transfer-based classification (MaDTC) model that improves the voting with linear weighting-based ensemble learning. This model extends the constraints of the linear weighting method so that it can simultaneously combine training data from multi-auxiliary domains and achieve a robust classifier by minimizing negative effects from the irrelevant part of multi-auxiliary domains. Experimental results on 409 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database with the baseline magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) data validate the effectiveness of the proposed method by significantly improving the classification accuracy to 80.37% for the identification of MCI-to-AD conversion, outperforming the state-of-the-art methods.
Collapse
Affiliation(s)
- Bo Cheng
- Key Laboratory of Intelligent Information Processing and Control of Chongqing Municipal Institutions of Higher Education, Chongqing Three Gorges University, Chongqing, 404100, China.
- College of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.
| | - Bingli Zhu
- College of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
| | - Shuchang Pu
- Department of Logistics Management, Chongqing Three Gorges University, Chongqing, 404100, China
| |
Collapse
|
8
|
Group Guided Fused Laplacian Sparse Group Lasso for Modeling Alzheimer's Disease Progression. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:4036560. [PMID: 32104201 PMCID: PMC7033952 DOI: 10.1155/2020/4036560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/27/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
Abstract
As the largest cause of dementia, Alzheimer's disease (AD) has brought serious burdens to patients and their families, mostly in the financial, psychological, and emotional aspects. In order to assess the progression of AD and develop new treatment methods for the disease, it is essential to infer the trajectories of patients' cognitive performance over time to identify biomarkers that connect the patterns of brain atrophy and AD progression. In this article, a structured regularized regression approach termed group guided fused Laplacian sparse group Lasso (GFL-SGL) is proposed to infer disease progression by considering multiple prediction of the same cognitive scores at different time points (longitudinal analysis). The proposed GFL-SGL simultaneously exploits the interrelated structures within the MRI features and among the tasks with sparse group Lasso (SGL) norm and presents a novel group guided fused Laplacian (GFL) regularization. This combination effectively incorporates both the relatedness among multiple longitudinal time points with a general weighted (undirected) dependency graphs and useful inherent group structure in features. Furthermore, an alternating direction method of multipliers- (ADMM-) based algorithm is also derived to optimize the nonsmooth objective function of the proposed approach. Experiments on the dataset from Alzheimer's Disease Neuroimaging Initiative (ADNI) show that the proposed GFL-SGL outperformed some other state-of-the-art algorithms and effectively fused the multimodality data. The compact sets of cognition-relevant imaging biomarkers identified by our approach are consistent with the results of clinical studies.
Collapse
|
9
|
Li Y, Sun C, Li P, Zhao Y, Mensah GK, Xu Y, Guo H, Chen J. Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset. Front Neurosci 2020; 14:60. [PMID: 32116508 PMCID: PMC7029661 DOI: 10.3389/fnins.2020.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/15/2020] [Indexed: 01/21/2023] Open
Abstract
Recent works have shown that the resting-state brain functional connectivity hypernetwork, where multiple nodes can be connected, are an effective technique for brain disease diagnosis and classification research. The lasso method was used to construct hypernetworks by solving sparse linear regression models in previous research. But, constructing a hypernetwork based on the lasso method simply selects a single variable, in that it lacks the ability to interpret the grouping effect. Considering the group structure problem, the previous study proposed to create a hypernetwork based on the elastic net and the group lasso methods, and the results showed that the former method had the best classification performance. However, the highly correlated variables selected by the elastic net method were not necessarily in the active set in the group. Therefore, we extended our research to address this issue. Herein, we propose a new method that introduces the sparse group lasso method to improve the construction of the hypernetwork by solving the group structure problem of the brain regions. We used the traditional lasso, group lasso method, and sparse group lasso method to construct a hypernetwork in patients with depression and normal subjects. Meanwhile, other clustering coefficients (clustering coefficients based on pairs of nodes) were also introduced to extract features with traditional clustering coefficients. Two types of features with significant differences obtained after feature selection were subjected to multi-kernel learning for feature fusion and classification using each method, respectively. The network topology results revealed differences among the three networks, where hypernetwork using the lasso method was the strictest; the group lasso, most lenient; and the sgLasso method, moderate. The network topology of the sparse group lasso method was similar to that of the group lasso method but different from the lasso method. The classification results show that the sparse group lasso method achieves the best classification accuracy by using multi-kernel learning, which indicates that better classification performance can be achieved when the group structure exists and is properly extended.
Collapse
Affiliation(s)
- Yao Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Chao Sun
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Pengzu Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yunpeng Zhao
- College of Arts, Taiyuan University of Technology, Taiyuan, China
| | - Godfred Kim Mensah
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hao Guo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Junjie Chen
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
10
|
Liu X, Cao P, Wang J, Kong J, Zhao D. Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer's Disease. Neuroinformatics 2019; 17:271-294. [PMID: 30284672 DOI: 10.1007/s12021-018-9398-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is characterized by gradual neurodegeneration and loss of brain function, especially for memory during early stages. Regression analysis has been widely applied to AD research to relate clinical and biomarker data such as predicting cognitive outcomes from MRI measures. Recently, multi-task based feature learning (MTFL) methods with sparsity-inducing [Formula: see text]-norm have been widely studied to select a discriminative feature subset from MRI features by incorporating inherent correlations among multiple clinical cognitive measures. However, existing MTFL assumes the correlation among all tasks is uniform, and the task relatedness is modeled by encouraging a common subset of features via sparsity-inducing regularizations that neglect the inherent structure of tasks and MRI features. To address this issue, we proposed a fused group lasso regularization to model the underlying structures, involving 1) a graph structure within tasks and 2) a group structure among the image features. To this end, we present a multi-task feature learning framework with a mixed norm of fused group lasso and [Formula: see text]-norm to model these more flexible structures. For optimization, we employed the alternating direction method of multipliers (ADMM) to efficiently solve the proposed non-smooth formulation. We evaluated the performance of the proposed method using the Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets. The experimental results demonstrate that incorporating the two prior structures with fused group lasso norm into the multi-task feature learning can improve prediction performance over several competing methods, with estimated correlations of cognitive functions and identification of cognition-relevant imaging markers that are clinically and biologically meaningful.
Collapse
Affiliation(s)
- Xiaoli Liu
- Computer Science and Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, Shenyang, China
| | - Peng Cao
- Computer Science and Engineering, Northeastern University, Shenyang, China.
| | - Jianzhong Wang
- College of Information Science and Technology, Northeast Normal University, Changchun, China
| | - Jun Kong
- College of Information Science and Technology, Northeast Normal University, Changchun, China.,Key Laboratory of Applied Statistics of MOE, Changchun, China
| | - Dazhe Zhao
- Computer Science and Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, Shenyang, China
| |
Collapse
|
11
|
Kar S, Majumder DD. A Novel Approach of Diffusion Tensor Visualization Based Neuro Fuzzy Classification System for Early Detection of Alzheimer's Disease. J Alzheimers Dis Rep 2019; 3:1-18. [PMID: 30842994 PMCID: PMC6400114 DOI: 10.3233/adr-180082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study examined early detection of Alzheimer's disease (AD) by diffusion tensor visualization-based methodology and neuro-fuzzy tools. Initially, we proposed a model for the early detection of AD using the measurement of apparent diffusion coefficient, fractional anisotropy, and gray matter, which can determine neurological disorder patterns and abnormalities in brain white matter. These are used as input parameters into fuzzy tools, and using fuzzy rules, we evaluate the AD score as an output variable that provides a useful platform to physicians in determining the status of the disease. In the second stage, we present an investigative study on AD and used the neuro-fuzzy classification system for pattern recognition of either AD or healthy control. The experimental results are from 20 samples (14 for training, 3 for validation, and 3 for testing) used in an artificial neural network classification system. The neural network is trained with a training algorithm and the performance of the training algorithm is obtained by executing a fuzzy expert system. Out of 20 patients, 9 are AD patients and 11 are healthy control patients. We present a neuro-fuzzy tool as a better classifier for early detection of AD and obtain a satisfactory performance with 100% accuracy.
Collapse
Affiliation(s)
- Subrata Kar
- Department of Mathematics, Dumkal Institute of Engineering & Technology, Murshidabad, West Bengal, India
| | - D Dutta Majumder
- Department of Electronics and Communication Sciences, Indian Statistical Institute, Kolkata, West Bengal, India.,Institute of Cybernetics Systems & Information Technology, Kolkata, India
| |
Collapse
|
12
|
Bayesian multitask learning regression for heterogeneous patient cohorts. J Biomed Inform 2019; 100S:100059. [DOI: 10.1016/j.yjbinx.2019.100059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/23/2019] [Accepted: 10/06/2019] [Indexed: 11/22/2022]
|
13
|
Guler GO, Zengin G, Karadag F, Mollica A, Picot CMN, Mahomoodally MF. HPLC-DAD profiles and pharmacological insights of Onobrychis argyrea subsp isaurica extracts. Comput Biol Chem 2018; 76:256-263. [DOI: 10.1016/j.compbiolchem.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
|