1
|
Fu Q, Li Q, Li X. An improved multi-objective marine predator algorithm for gene selection in classification of cancer microarray data. Comput Biol Med 2023; 160:107020. [PMID: 37196457 DOI: 10.1016/j.compbiomed.2023.107020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Gene selection (GS) is an important branch of interest within the field of feature selection, which is widely used in cancer classification. It provides essential insights into the pathogenesis of cancer and enables a deeper understanding of cancer data. In cancer classification, GS is essentially a multi-objective optimization problem, which aims to simultaneously optimize the two objectives of classification accuracy and the size of the gene subset. The marine predator algorithm (MPA) has been successfully employed in practical applications, however, its random initialization can lead to blindness, which may adversely affect the convergence of the algorithm. Furthermore, the elite individuals in guiding evolution are randomly chosen from the Pareto solutions, which may degrade the good exploration performance of the population. To overcome these limitations, a multi-objective improved MPA with continuous mapping initialization and leader selection strategies is proposed. In this work, a new continuous mapping initialization with ReliefF overwhelms the defects with less information in late evolution. Moreover, an improved elite selection mechanism with Gaussian distribution guides the population to evolve towards a better Pareto front. Finally, an efficient mutation method is adopted to prevent evolutionary stagnation. To evaluate its effectiveness, the proposed algorithm was compared with 9 famous algorithms. The experimental results on 16 datasets demonstrate that the proposed algorithm can significantly reduce the data dimension and obtain the highest classification accuracy on most of high-dimension cancer microarray datasets.
Collapse
Affiliation(s)
- Qiyong Fu
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China
| | - Qi Li
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaobo Li
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Binary Particle Swarm Optimization Intelligent Feature Optimization Algorithm-Based Magnetic Resonance Image in the Diagnosis of Adrenal Tumor. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5143757. [PMID: 35291422 PMCID: PMC8901308 DOI: 10.1155/2022/5143757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
This research was aimed to explore the application value of magnetic resonance imaging (MRI) based on binary particle swarm optimization algorithm (BPSO) in the diagnosis of adrenal tumors. 120 patients with adrenal tumors admitted to the hospital were selected and randomly divided into the control group (conventional MRI examination) and the observation group (MRI examination based on the BPSO intelligent feature optimization algorithm), with 60 cases in each group. The sensitivity, specificity, accuracy, and Kappa of the diagnostic methods were compared between the two groups. The results showed that the calculation rate of the BPSO algorithm was the best under the same processing effect (P < 0.05). Optimization algorithm-based MRI is used in the diagnosis of adrenal tumors, and the results showed that the sensitivity, specificity, accuracy, and Kappa (83.33%, 79.17%, 81.67%, and 0.69) of the observation group were higher than those of the control group (50%, 75%, 58.33%, and 0.45). The similarity of tumor location results in the observation group (89.24%) was significantly higher than that in the control group (65.9%) (P < 0.05). In conclusion, compared with SFFS and other algorithms, the BPSO algorithm has more advantages in calculation speed. MRI based on the BPSO intelligent feature optimization algorithm has a good diagnostic effect and higher accuracy in adrenal tumors, showing the good development prospects of computer intelligence technology in the field of medicine.
Collapse
|
3
|
Kumar A, Sinha N, Bhardwaj A, Goel S. Clinical risk assessment of chronic kidney disease patients using genetic programming. Comput Methods Biomech Biomed Engin 2021; 25:887-895. [PMID: 34726985 DOI: 10.1080/10255842.2021.1985476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronic kidney disease (CKD) is one of the serious health concerns in the twenty-first century. CKD impacts over 37 million Americans. By applying machine learning (ML) techniques to clinical data, CKD can be diagnosed early. This early detection of CKD can prevent numerous loss of life. In this work, clinical data set of 400 patients, available on the UCI repository, are taken. Unfortunately, this data set doesn't have an equal distribution of CKD and Non-CKD samples. This imbalanced nature of data highly influences the learning capabilities of classifiers. Genetic Programming (GP) is an ML technique based on the evolution of species. GP with standard fitness function, also impacted by this imbalanced nature of data. A new Euclidean distance-based fitness function in GP is proposed to handle this imbalanced nature of the data set. To compare the robustness of the proposed work, other classification techniques, K-nearest neighborhood (KNN), KNN with particle swarm optimization (PSO), and GP with the standard fitness function, is also applied. For ten-fold cross-validation, the KNN shows an accuracy of 83.54% with an AUC value of 0.69, the PSO-KNN shows an accuracy of 96.79% with an AUC value of 0.94, and the GP, with the newly proposed fitness function, supersedes KNN and PSO-KNN and shows the accuracy of 99.33% with an AUC value of 0.99.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Computer Science Engineering, Bennett University, TechZone II, Greater Noida, India
| | | | - Arpit Bhardwaj
- Department of Computer Science and Engineering, Mahindra University, Hyderabad, India
| | - Shivani Goel
- Department of Computer Science Engineering, Bennett University, TechZone II, Greater Noida, India
| |
Collapse
|
4
|
Abiodun EO, Alabdulatif A, Abiodun OI, Alawida M, Alabdulatif A, Alkhawaldeh RS. A systematic review of emerging feature selection optimization methods for optimal text classification: the present state and prospective opportunities. Neural Comput Appl 2021; 33:15091-15118. [PMID: 34404964 PMCID: PMC8361413 DOI: 10.1007/s00521-021-06406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023]
Abstract
Specialized data preparation techniques, ranging from data cleaning, outlier detection, missing value imputation, feature selection (FS), amongst others, are procedures required to get the most out of data and, consequently, get the optimal performance of predictive models for classification tasks. FS is a vital and indispensable technique that enables the model to perform faster, eliminate noisy data, remove redundancy, reduce overfitting, improve precision and increase generalization on testing data. While conventional FS techniques have been leveraged for classification tasks in the past few decades, they fail to optimally reduce the high dimensionality of the feature space of texts, thus breeding inefficient predictive models. Emerging technologies such as the metaheuristics and hyper-heuristics optimization methods provide a new paradigm for FS due to their efficiency in improving the accuracy of classification, computational demands, storage, as well as functioning seamlessly in solving complex optimization problems with less time. However, little details are known on best practices for case-to-case usage of emerging FS methods. The literature continues to be engulfed with clear and unclear findings in leveraging effective methods, which, if not performed accurately, alters precision, real-world-use feasibility, and the predictive model's overall performance. This paper reviews the present state of FS with respect to metaheuristics and hyper-heuristic methods. Through a systematic literature review of over 200 articles, we set out the most recent findings and trends to enlighten analysts, practitioners and researchers in the field of data analytics seeking clarity in understanding and implementing effective FS optimization methods for improved text classification tasks.
Collapse
Affiliation(s)
- Esther Omolara Abiodun
- School of Computer Sciences, Universiti Sains Malaysia, George Town, Malaysia ,Department of Computer Sciences, University of Abuja, Abuja, Nigeria
| | - Abdulatif Alabdulatif
- Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia
| | - Oludare Isaac Abiodun
- School of Computer Sciences, Universiti Sains Malaysia, George Town, Malaysia ,Department of Computer Sciences, University of Abuja, Abuja, Nigeria
| | - Moatsum Alawida
- School of Computer Sciences, Universiti Sains Malaysia, George Town, Malaysia ,Department of Computer Sciences, Abu Dhabi University, Abu Dhabi, UAE
| | - Abdullah Alabdulatif
- Computer Department, College of Sciences and Arts, Qassim University, P.O. Box 53, Al-Rass, Saudi Arabia
| | - Rami S. Alkhawaldeh
- Department of Computer Information Systems, The University of Jordan, Aqaba, 77110 Jordan
| |
Collapse
|
5
|
Integration of multi-objective PSO based feature selection and node centrality for medical datasets. Genomics 2020; 112:4370-4384. [PMID: 32717320 DOI: 10.1016/j.ygeno.2020.07.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 01/19/2023]
Abstract
In the past decades, the rapid growth of computer and database technologies has led to the rapid growth of large-scale medical datasets. On the other, medical applications with high dimensional datasets that require high speed and accuracy are rapidly increasing. One of the dimensionality reduction approaches is feature selection that can increase the accuracy of the disease diagnosis and reduce its computational complexity. In this paper, a novel PSO-based multi objective feature selection method is proposed. The proposed method consists of three main phases. In the first phase, the original features are showed as a graph representation model. In the next phase, feature centralities for all nodes in the graph are calculated, and finally, in the third phase, an improved PSO-based search process is utilized to final feature selection. The results on five medical datasets indicate that the proposed method improves previous related methods in terms of efficiency and effectiveness.
Collapse
|
6
|
Abstract
Current research on computer-aided diagnosis (CAD) of liver cancer is based on traditional feature engineering methods, which have several drawbacks including redundant features and high computational cost. Recent deep learning models overcome these problems by implicitly capturing intricate structures from large-scale medical image data. However, they are still affected by network hyperparameters and topology. Hence, the state of the art in this area can be further optimized by integrating bio-inspired concepts into deep learning models. This work proposes a novel bio-inspired deep learning approach for optimizing predictive results of liver cancer. This approach contributes to the literature in two ways. Firstly, a novel hybrid segmentation algorithm is proposed to extract liver lesions from computed tomography (CT) images using SegNet network, UNet network, and artificial bee colony optimization (ABC), namely, SegNet-UNet-ABC. This algorithm uses the SegNet for separating liver from the abdominal CT scan, then the UNet is used to extract lesions from the liver. In parallel, the ABC algorithm is hybridized with each network to tune its hyperparameters, as they highly affect the segmentation performance. Secondly, a hybrid algorithm of the LeNet-5 model and ABC algorithm, namely, LeNet-5/ABC, is proposed as feature extractor and classifier of liver lesions. The LeNet-5/ABC algorithm uses the ABC to select the optimal topology for constructing the LeNet-5 network, as network structure affects learning time and classification accuracy. For assessing performance of the two proposed algorithms, comparisons have been made to the state-of-the-art algorithms on liver lesion segmentation and classification. The results reveal that the SegNet-UNet-ABC is superior to other compared algorithms regarding Jaccard index, Dice index, correlation coefficient, and convergence time. Moreover, the LeNet-5/ABC algorithm outperforms other algorithms regarding specificity, F1-score, accuracy, and computational time.
Collapse
|
7
|
Wang L, Shi Y, Suk HI, Noble A, Hamarneh G. Special issue on machine learning in medical imaging. Comput Med Imaging Graph 2019; 74:10-11. [PMID: 30908957 DOI: 10.1016/j.compmedimag.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA.
| | - Yinghuan Shi
- Department of Computer Science and Technology, Nanjing University, PR China
| | - Heung-Il Suk
- Department of Brain and Cognitive Engineering, Korea University, Republic of Korea
| | - Alison Noble
- Biomedical Engineering, University of Oxford, UK
| | | |
Collapse
|