1
|
Li H, Lim JH, Lv Y, Li N, Kang B, Lee JY. Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization: Theoretical Insights into Recent Advances. Chem Rev 2023; 123:4795-4854. [PMID: 36921251 DOI: 10.1021/acs.chemrev.2c00729] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Carbon allotropes have contributed to all aspects of people's lives throughout human history. As emerging carbon-based low-dimensional materials, graphyne family members (GYF), represented by graphdiyne, have a wide range potential applications due to their superior physical and chemical properties. In particular, graphdiyne (GDY), as the leader of the graphyne family, has been practically applied to various research fields since it was first successfully synthesized. GYF have a large surface area, both sp and sp2 hybridization, and a certain band gap, which was considered to originate from the overlap of carbon 2pz orbitals and the inhomogeneous π-bonds of carbon atoms in different hybridization forms. These properties mean GYF-based materials still have many potential applications to be developed, especially in energy storage and catalytic utilization. Since most of the GYF have yet to be synthesized and applications of successfully synthesized GYF have not been developed for a long time, theoretical results in various application fields should be shared to experimentalists to attract more intentions. In this Review, we summarized and discussed the synthesis, structural properties, and applications of GYF-based materials from the theoretical insights, hoping to provide different viewpoints and comments.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jong Hyeon Lim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Yipin Lv
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Nannan Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
2
|
Dewangan J, Mahamiya V, Shukla A, Chakraborty B. An ab initiostudy of catechol sensing in pristine and transition metal decorated γ-graphyne. NANOTECHNOLOGY 2023; 34:175503. [PMID: 36762606 DOI: 10.1088/1361-6528/acb59d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Catechol is a toxic biomolecule due to its low degradability to the ecosystem and unpredictable impact on human health. In this work, we have investigated the catechol sensing properties of pristine and transition metal (Ag, Au, Pd, and Ti) decoratedγ-graphyne (GY) systems by employing the density functional theory and first-principles molecular dynamics approach. Simulation results revealed that Pd and Ti atom is more suitable than Ag and Au atom for the decoration of the GY structure with a large charge transfer of 0.29e and 1.54e from valence d-orbitals of the Pd/Ti atom to the carbon-2p orbitals of GY. The GY + Ti system offers excellent electrochemical sensing towards catechol with charge donation of 0.14e from catechol O-p orbitals to Ti-d orbitals, while the catechol molecule is physisorbed to pristine GY with only 0.04e of charge transfer. There exists an energy barrier of 5.19 eV for the diffusion of the Ti atom, which prevents the system from metal-metal clustering. To verify the thermal stability of the sensing material, we have conducted the molecular dynamics simulations at 300 K. We have reported feasible recovery times of 2.05 × 10-5s and 4.7 × 102s for sensing substrate GY + Pd and GY + Ti, respectively, at 500 K of UV light.
Collapse
Affiliation(s)
- Juhee Dewangan
- Department of Physics, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Vikram Mahamiya
- Department of Physics, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Alok Shukla
- Department of Physics, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Bombay, Mumbai 40085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
3
|
Celaya CA, Muñiz J, Salcedo R, Sansores LE. The Role of Cobalt Clusters (Co
n
,
n
= 1–5) Supported on Defective γ–Graphyne for Efficient Hydrogen Adsorption: A First Principles Study. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christian A. Celaya
- Instituto de Energías Renovables Universidad Nacional Autónoma de México Priv. Xochicalco s/n, Col. Centro Temixco Morelos CP 62580 Mexico
- Departamento de Materiales de Baja Dimensionalidad Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Circuito Exterior s/n Ciudad Universitaria Apartado Postal 70‐360, Ciudad de México Coyoacán CP 04510 Mexico
| | - Jesús Muñiz
- Instituto de Energías Renovables Universidad Nacional Autónoma de México Priv. Xochicalco s/n, Col. Centro Temixco Morelos CP 62580 Mexico
| | - Roberto Salcedo
- Departamento de Materiales de Baja Dimensionalidad Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Circuito Exterior s/n Ciudad Universitaria Apartado Postal 70‐360, Ciudad de México Coyoacán CP 04510 Mexico
| | - Luis Enrique Sansores
- Departamento de Materiales de Baja Dimensionalidad Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Circuito Exterior s/n Ciudad Universitaria Apartado Postal 70‐360, Ciudad de México Coyoacán CP 04510 Mexico
| |
Collapse
|
4
|
Isidro-Ortega FJ, Arellano J, Torres-Gómez N, González-Ruíz A, Vera-Garcia A. DFT study for hydrogen storage on γ -Boron-Graphyne decorated with Li atoms. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
|
6
|
Daneshdoost V, Ghiasi R, Marjani A. INVESTIGATING THE EFFECTS OF THE EXTERNAL ELECTRIC FIELD ON OSMABENZYNE IN THE GROUND (S0) AND FIRST EXCITED SINGLET (S1) STATES: INSIGHT INTO STRUCTURES, ENERGY, AND PROPERTIES. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620110037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Talib SH, Hussain S, Baskaran S, Lu Z, Li J. Chromium Single-Atom Catalyst with Graphyne Support: A Theoretical Study of NO Oxidation and Reduction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01175] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shamraiz Hussain Talib
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Sajjad Hussain
- Department of Chemistry, Mohi-Ud-Din Islamic University Nerian Sharif, Azad Jammu and Kashmir 12080, Pakistan
| | - Sambath Baskaran
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhansheng Lu
- School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
First-principles study on the adsorption and diffusion properties of non-noble (Fe, Co, Ni and Cu) and noble (Ru, Rh, Pt and Pd) metal single atom on graphyne. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Zhang X, Sun S, Wang S. First-principles investigation on the bonding mechanisms of two-dimensional carbon materials on the transition metals surfaces. RSC Adv 2020; 10:43412-43419. [PMID: 35519694 PMCID: PMC9058513 DOI: 10.1039/d0ra08984b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Understanding the bonding mechanisms between carbon and metal atoms are crucial for experimental preparations of low-dimensional carbon materials and metal/low-dimensional carbon composites. In this work, various bonding modes are summarized through a systematical study on the adsorptions of graphene and graphyne on surfaces of typical transition metals. If a carbon atom is adjacent to a transition metal atom, the C-pz electron may form a covalent bond with a s or a d electron of the transition metal atom. When a metal atom lies below two carbon atoms of graphene or graphyne, two new covalent bonds may be formed between the metal atom and the two carbon atoms by two C-pz electrons with two d or two sd-hybridized orbital electrons of the transition metal atom. Specially, the two covalent bonds are almost identical by two sd-hybridized orbital electrons, but the two bonds should show significant differences by two d-orbital electrons. Three covalent bonds formed between three carbon atoms and one sd2-hybridized Ti atom are observed on the graphyne/Ti (0001) interface. In addition to the existing sp and sp2 hybridizations, the carbon atom may show the sp3 hybridization after graphyne adsorbs on some metals. These research results are obtained through a comprehensive analysis of the adsorption configuration, the differential charge density, and the projected of states from the first-principles calculations in the present study. Except for the existing sp and sp2 hybridizations, the carbon shows the sp3 hybridization after graphyne adsorbs on Ti surface.![]()
Collapse
Affiliation(s)
- Xin Zhang
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- 110016 Shenyang
- China
| | - Shenghui Sun
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- 110016 Shenyang
- China
| | - Shaoqing Wang
- School of Materials Science and Engineering
- University of Science and Technology of China
- 110016 Shenyang
- China
| |
Collapse
|
10
|
Sensing and elimination of the hazardous materials such as Sarin by metal functionalized γ-graphyne surface: A DFT study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Reversible hydrogen adsorption on Li-decorated T-graphene flake: The effect of electric field. J Mol Graph Model 2019; 87:192-196. [DOI: 10.1016/j.jmgm.2018.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 11/18/2022]
|
12
|
Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y. Progress in Research into 2D Graphdiyne-Based Materials. Chem Rev 2018; 118:7744-7803. [DOI: 10.1021/acs.chemrev.8b00288] [Citation(s) in RCA: 546] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Changshui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Ning Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
| | - Yurui Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Huibiao Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|
13
|
James A, John C, Owais C, Myakala SN, Chandra Shekar S, Choudhuri JR, Swathi RS. Graphynes: indispensable nanoporous architectures in carbon flatland. RSC Adv 2018; 8:22998-23018. [PMID: 35540143 PMCID: PMC9081630 DOI: 10.1039/c8ra03715a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/07/2018] [Indexed: 11/21/2022] Open
Abstract
Theoretical design and experimental realization of novel nanoporous architectures in carbon membranes has been a success story in recent times. Research on graphynes, an interesting class of materials in carbon flatland, has contributed immensely to this success story. Graphyne frameworks possessing sp and sp2 hybridized carbon atoms offer a variety of uniformly distributed nanoporous architectures for applications ranging from water desalination, gas separation, and energy storage to catalysis. Theory has played a pivotal role in research on graphynes, starting from the prediction of various structural forms to the emergence of their remarkable applications. Herein, we attempt to provide an up-to-date account of research on graphynes, highlighting contributions from numerous theoretical investigations that have led to the current status of graphynes as indispensable materials in carbon flatland. Despite unsolved challenges in large-scale synthesis, the future appears bright for graphynes in present theoretical and experimental research scenarios.
Collapse
Affiliation(s)
- Anto James
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Chris John
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Cheriyacheruvakkara Owais
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Stephen Nagaraju Myakala
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Sarap Chandra Shekar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Jyoti Roy Choudhuri
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| |
Collapse
|
14
|
Tian G, Qi Z, Ma W, Wang Y. On the Catalytic Activity of Pt Supported by Graphyne in the Oxidation of Ethanol. ChemistrySelect 2017; 2:2311-2321. [PMID: 28966970 PMCID: PMC5613985 DOI: 10.1002/slct.201601874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/20/2017] [Indexed: 11/07/2022]
Abstract
The adsorption of Pt clusters on β- and γ-graphyne (β-GY, γ-GY), graphdiyne (GDY), and graphene (GP) was extensively investigated with density functional theory. Ethanol adsorption and its partial oxidation on the Pt supported by the GY and GP were then explored to address the influence of the supporting materials on the activity of Pt nanoclusters to ethanol oxidation. Among the examined adsorption sites such as the hollow, Csp-Csp, and Csp-Csp2 bonds, the hollow site consisting of multiple triple bonds is the most attractive one to adsorb Pt and Pt4 regardless of β-GY, γ-GY, and GDY. The binding of Pt4 to the GDY is slightly stronger than those of β-GY and γ-GY (binding energy: -3.64, -3.73, and -4.08eV). It is remarkable that the adsorption of Pt4 on GY is 2-3 times stronger than that on GP (-3.6-4.1 vs -1.3 eV), showing that the GY and GDY are better substracts than the GP for the stability of Pt clusters. Furthermore, the potential energy profiles for the oxidation of ethanol show that in spite of the higher energy barrier for the adsorbed ethanol on Pt4 supported by γ-GY than by GP (1.54 vs 1.19eV), the dehydrogenation product and of ethanol on Pt-graphyne is much stabler than that on Pt-graphene, suggesting that graphyne is thermodynamically more favorable than graphene as a subtract for the Pt catalyst.
Collapse
Affiliation(s)
- Ge Tian
- College of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250100, P. R. China
- Department of Chemistry and Forensic Science, Albany State University, Albany, Georgia 31705, USA
| | - Zhongnan Qi
- Department of Chemistry and Forensic Science, Albany State University, Albany, Georgia 31705, USA
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Wanyong Ma
- College of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250100, P. R. China
| | - Yixuan Wang
- Department of Chemistry and Forensic Science, Albany State University, Albany, Georgia 31705, USA
| |
Collapse
|
15
|
Posligua V, Urbina A, Rincón L, Soetens JC, Méndez M, Zambrano C, Torres F. Theoretical evaluation of metal-functionalized rccc R-pyrogallol[4]arenes as media for molecular hydrogen storage. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|