1
|
Wang X, Guo H, Kang D, Pullerits T, Song P. Study on the Influence of External Electric Field Control and Vibrational Quantum Effect on the Charge Separation Mechanism in Fullerene-Based Systems. J Phys Chem A 2025; 129:1207-1218. [PMID: 39873627 DOI: 10.1021/acs.jpca.4c04640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Based on the DCV-C60 system of fullerene acceptor organic solar cell active materials, the charge transfer process of D-A type molecular materials under the action of an external electric field (Fext) was explored. Within the range of electric field application, the excited state characteristics exhibit certain regular changes. Based on reducing the excitation energy, the excitation mode shows a trend of developing toward low excited states. The effect of solvent polarity on the stability and reorganization energy of the charge transfer state was investigated. The dependence of charge separation parameters on specific molecular structures within the electric field range was studied, proving that the electric field set along the electron transfer direction can indeed accelerate charge separation. The influence of vibrational modes on the charge separation process was studied, and the results showed that the vibrational quantum tunneling effect significantly promoted the charge separation. Therefore, considering the vibrational excitation effect and the perturbation of the nuclear-electron interaction is crucial for more accurate simulation of the electron-vibration coupling process in the excited state.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Huijie Guo
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Dawei Kang
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Tõnu Pullerits
- Department of Chemical Physics, Lund University, Box 124, Lund 22100, Sweden
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China
| |
Collapse
|
2
|
Guo H, Wang X, Zhang M, Pullerits T, Song P. Regulation of organic solar cells performance through external electric field: From charge transfer mechanisms to photovoltaic properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125058. [PMID: 39226669 DOI: 10.1016/j.saa.2024.125058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
In organic solar cells (OSCs), comprehending the charge transfer mechanism at D/A interfaces is crucial for photoinduced charge generation and enhancing power conversion efficiency (PCE). The charge transfer mechanism and photovoltaic performance of the parallel stacking interface configuration of the PTQ10 polymer donor and T2EH non-fullerene acceptor (NFA) are systematically studied at the microscopic scale. The analysis of the electron-hole distribution of the PTQ10/T2EH excited states revealed the presence of multiple charge excitation modes and charge transfer pathways. Using Marcus theory, we examine the charge separation rate (KCS) of PTQ10/T2EH under external electric field (Fext) modulation, and it is clarified that reorganization energy (λ) is the main factor that affects the KCS. Our results show that Fext has a positive impact on the photovoltaic properties of PTQ10/T2EH thin films, as evidenced by the modulation of the open circuit voltage (VOC), voltage loss (VLOSS) and fill factor (FF). Overall, this study provides valuable theoretical insights for Fext to accelerate the charge separation process and enhance photovoltaic efficiency.
Collapse
Affiliation(s)
- Huijie Guo
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Xinyue Wang
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Meixia Zhang
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Tõnu Pullerits
- Department of Chemical Physics, Lund University, Box 124, Lund 22100, Sweden.
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
3
|
Zhang CR, Yu HY, Zhang ML, Liu XM, Chen YH, Liu ZJ, Wu YZ, Chen HS. Modulating the organic photovoltaic properties of non-fullerene acceptors by molecular modification based on Y6: a theoretical study. Phys Chem Chem Phys 2023; 25:25465-25479. [PMID: 37712300 DOI: 10.1039/d3cp02520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Developing non-fullerene acceptors (NFAs) by modifying the backbone, side chains and end groups is the most important strategy to improve the power conversion efficiency of organic solar cells (OSCs). Among numerous developed NFAs, Y6 and its derivatives are famous NFAs in the OSC field due to their good performance. Herein, in order to understand the mechanism of tuning the photovoltaic performance by modifying the Y6's center backbone, π-spacer and side-chains, we selected the PM6:Y6 OSC as a reference and systematically studied PM6:AQx-2, PM6:Y6-T, PM6:Y6-2T, PM6:Y6-O, PM6:Y6-1O and PM6:Y6-2O OSC systems based on extensive quantum chemistry calculations. The results indicate that introducing quinoxaline to substitute thiadiazole in the backbone induces a blue-shift of absorption spectra, reduces the charge transfer (CT) distance (Δd) and average electrostatic potential (ESP), and increases the singlet-triplet energy gap (ΔEST), CT excitation energy and the number of CT states in low-lying excitations. Inserting thienyl and dithiophenyl as π spacers generates a red-shift of absorption spectra, enlarges Δd and average ESP, and reduces ΔEST and the number of CT states. Introducing furo[3,2-b]furan for substituting one thieno[3,2-b]thiophene unit in the Y6's backbone causes a red-shift of absorption spectra and increases ΔEST, Δd and average ESP as well as CT excitation energy. Introducing alkoxyl as a side chain results in a blue-shift of absorption spectra, and increases ΔEST, Δd, average ESP, CT excitation energy and the number of CT states. The rate constants calculated using Marcus theory suggest that all the molecular modifications of Y6 reduce the exciton dissociation and charge recombination rates at the heterojunction interface, while introducing furo[3,2-b]furan and alkoxyl enlarges CT rates.
Collapse
Affiliation(s)
- Cai-Rong Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Hai-Yuan Yu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Mei-Ling Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Xiao-Meng Liu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Yu-Hong Chen
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Zi-Jiang Liu
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - You-Zhi Wu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Hong-Shan Chen
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
4
|
Tang Y, Luo Q, Chen Y, Xu K. All-Silicon Photoelectric Biosensor on Chip Based on Silicon Nitride Waveguide with Low Loss. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050914. [PMID: 36903792 PMCID: PMC10005702 DOI: 10.3390/nano13050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/14/2023]
Abstract
Compared to the widely used compound semiconductor photoelectric sensors, all-silicon photoelectric sensors have the advantage of easy mass production because they are compatible with the complementary metal-oxide-semiconductor (CMOS) fabrication technique. In this paper, we propose an all-silicon photoelectric biosensor with a simple process and that is integrated, miniature, and with low loss. This biosensor is based on monolithic integration technology, and its light source is a PN junction cascaded polysilicon nanostructure. The detection device utilizes a simple refractive index sensing method. According to our simulation, when the refractive index of the detected material is more than 1.52, evanescent wave intensity decreases with the growth of the refractive index. Thus, refractive index sensing can be achieved. Moreover, it was also shown that, compared to a slab waveguide, the embedded waveguide designed in this paper has a lower loss. With these features, our all-silicon photoelectric biosensor (ASPB) demonstrates its potential in the application of handheld biosensors.
Collapse
|
5
|
Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook. ENERGIES 2022. [DOI: 10.3390/en15041553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The grand challenges in renewable energy lie in our ability to comprehend efficient energy conversion systems, together with dealing with the problem of intermittency via scalable energy storage systems. Relatively little progress has been made on this at grid scale and two overriding challenges still need to be addressed: (i) limiting damage to the environment and (ii) the question of environmentally friendly energy conversion. The present review focuses on a novel route for producing hydrogen, the ultimate clean fuel, from the Sun, and renewable energy source. Hydrogen can be produced by light-driven photoelectrochemical (PEC) water splitting, but it is very inefficient; rather, we focus here on how electric fields can be applied to metal oxide/water systems in tailoring the interplay with their intrinsic electric fields, and in how this can alter and boost PEC activity, drawing both on experiment and non-equilibrium molecular simulation.
Collapse
|
6
|
Yu HY, Zhang CR, Zhang ML, Liu XM, Gong JJ, Liu ZJ, Wu YZ, Chen HS. Molecular tuning of non-fullerene electron acceptors in organic photovoltaics: a theoretical study. NEW J CHEM 2022. [DOI: 10.1039/d2nj03608h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
On the basis of the famous A–D–A-type non-fullerene acceptor IT-4F, this work investigates the effects of introducing methyl groups and substituting dicyano with O on optoelectronic properties and photovoltaic performances.
Collapse
Affiliation(s)
- Hai-Yuan Yu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Cai-Rong Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Mei-Ling Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Xiao-Meng Liu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Ji-Jun Gong
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Zi-Jiang Liu
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - You-Zhi Wu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Hong-Shan Chen
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
7
|
Wang Y, Zhang C, Yang B, Yuan L, Gong J, Liu Z, Wu Y, Chen H. The Halogenation Effects of Electron Acceptor ITIC for Organic Photovoltaic Nano-Heterojunctions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3417. [PMID: 34947765 PMCID: PMC8708652 DOI: 10.3390/nano11123417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 02/01/2023]
Abstract
Molecular engineering plays a critical role in the development of electron donor and acceptor materials for improving power conversion efficiency (PCE) of organic photovoltaics (OPVs). The halogenated acceptor materials in OPVs have shown high PCE. Here, to investigate the halogenation mechanism and the effects on OPV performances, based on the density functional theory calculations with the optimally tuned screened range-separated hybrid functional and the consideration of solid polarization effects, we addressed the halogenation effects of acceptor ITIC, which were modeled by bis-substituted ITIC with halogen and coded as IT-2X (X = F, Cl, Br), and PBDB-T:ITIC, PBDB-T:IT-2X (X = F, Cl, Br) complexes on their geometries, electronic structures, excitations, electrostatic potentials, and the rate constants of charge transfer, exciton dissociation (ED), and charge recombination processes at the heterojunction interface. The results indicated that halogenation of ITIC slightly affects molecular geometric structures, energy levels, optical absorption spectra, exciton binding energies, and excitation properties. However, the halogenation of ITIC significantly enlarges the electrostatic potential difference between the electron acceptor and donor PBDB-T with the order from fluorination and chlorination to bromination. The halogenation also increases the transferred charges of CT states for the complexes. Meanwhile, the halogenation effects on CT energies and electron process rates depend on different haloid elements. No matter which kinds of haloid elements were introduced in the halogenation of acceptors, the ED is always efficient in these OPV devices. This work provides an understanding of the halogenation mechanism, and is also conducive to the designing of novel materials with the aid of the halogenation strategy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China; (Y.W.); (B.Y.); (L.Y.); (J.G.)
| | - Cairong Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China; (Y.W.); (B.Y.); (L.Y.); (J.G.)
| | - Bing Yang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China; (Y.W.); (B.Y.); (L.Y.); (J.G.)
| | - Lihua Yuan
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China; (Y.W.); (B.Y.); (L.Y.); (J.G.)
| | - Jijun Gong
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China; (Y.W.); (B.Y.); (L.Y.); (J.G.)
| | - Zijiang Liu
- Department of Physics, Lanzhou City University, Lanzhou 730070, China;
| | - Youzhi Wu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
| | - Hongshan Chen
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
| |
Collapse
|
8
|
A comparative study of PffBT4T-2OD/EH-IDTBR and PffBT4T-2OD/PC71BM organic photovoltaic heterojunctions. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|