1
|
Luo J, Huang C, Liao Z, Ma X, Si T, Chen H, Li Z, Fan J. Unidirectional Drug Delivery and Responsive Release Guided by Nanofunnel-Shaped Heterojunction. NANO LETTERS 2025; 25:7853-7859. [PMID: 40323291 DOI: 10.1021/acs.nanolett.5c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Drug resistance often involves preventing drug entry or expelling drugs from cells, severely affecting the therapeutic effect. We propose nanofunnel-shaped devices by pairing truncated graphene/boron nitride nanocones and nanotubes using curvature gradients and material properties to modulate energy barriers for unidirectional drug delivery. Molecular dynamics simulations demonstrate spontaneous delivery across models (ΔG = -14.14 to -27.87 kcal·mol-1 for C∨-C||, BN∨-BN||, C∨-BN||). The potential of mean force calculations reveal energy barriers scale as ΔG ∝ 1/R2, with BN nanotubes showing 20-30% higher barriers (e.g., -19.63 vs -14.14 kcal·mol-1 for graphene) due to stronger van der Waals interactions. In the BN∨-C|| model, increasing the tube radius (9.59 to 20.34 Å) or decreasing the cone angle (180-60°) can flip ΔG, enabling bidirectional control. This curvature-material synergy bypasses efflux mechanisms, offering a tunable platform to combat drug resistance and enhance therapeutic precision.
Collapse
Affiliation(s)
- Jun Luo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Zhenyu Liao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ting Si
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, China
| | - Huan Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
2
|
Ahmed MT, Roy D, Roman AA, Islam S, Ahmed F. A first principles study of RbSnCl 3 perovskite toward NH 3, SO 2, and NO gas sensing. NANOSCALE ADVANCES 2024; 6:1218-1226. [PMID: 38356625 PMCID: PMC10863711 DOI: 10.1039/d3na00927k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
The sensitivity of a RbSnCl3 perovskite 2D layer toward NH3, SO2, and NO toxic gases has been studied via DFT analysis. The tri-atomic layer of RbSnCl3 possessed a tetragonal symmetry with a band gap of 1.433 eV. The adsorption energies of RbSnCl3 for NH3, SO2 and NO are -0.09, -0.43, and -0.56 eV respectively with a recovery time ranging from 3.4 × 10-8 to 3.5 ms. RbSnCl3 is highly sensitive toward SO2 and NO compared to NH3. The adsorption of SO2 and NO results in a significant structural deformation and a semiconductor-to-metal transition of RbSnCl3 perovskite. A high absorption coefficient (>103 cm-1), excessive optical conductivity (>1014 s-1), and a very low reflectivity (<3%) make RbSnCl3 a potential candidate for numerous optoelectronic applications. A significant shift in optical responses is observed through SO2 and NO adsorption, which can enable identification of the adsorbed gases. The studied characteristics signify that RbSnCl3 can be a potential candidate for SO2 and NO detection.
Collapse
Affiliation(s)
| | - Debashis Roy
- Department of Physics, Jashore University of Science and Technology Bangladesh
| | - Abdullah Al Roman
- Department of Physics, Jashore University of Science and Technology Bangladesh
| | - Shariful Islam
- Department of Physics, Jahangirnagar University Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University Bangladesh
| |
Collapse
|
3
|
Piya AA, Hossain AKMA. Investigation of the adsorption behavior of the anti-cancer drug hydroxyurea on the graphene, BN, AlN, and GaN nanosheets and their doped structures via DFT and COSMO calculations. RSC Adv 2023; 13:27309-27320. [PMID: 37705988 PMCID: PMC10496457 DOI: 10.1039/d3ra04072k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
To reduce the direct side effects of chemotherapy, researchers are trying to establish a new approach of a drug-delivery system using nanomaterials. In this study, we investigated graphene and its derivative nanomaterials for their favorable adsorption behavior with the anti-cancer drug hydroxyurea (HU) using DFT calculations. Initially, different pristine and doped graphene and its derivatives were taken into consideration as HU drug carriers. Among them, AlN, GaN, GaN-doped AlN, and AlN-doped GaN nanosheets exhibited favorable adsorption behavior with HU. The HU adsorbed on these four nanosheets with adsorption energies of -0.92, -0.75, -0.83, and -0.69 eV, transferring 0.16, 0.032, 0.108, and 0.230 e charges to the nanosheets, respectively, in air medium. In water solvent media, these four nanosheets interacted with HU by -0.56, -0.45, -0.58, and -0.56 eV by accepting a significant amount of charge of about 0.125, 0.128, 0.192, and 0.126 e from HU. The dipole moment and COSMO analysis also indicated that these nanosheets, except for GaN-doped AlN, show high asymmetricity and solubility in water solvent media due to the increased values of the dipole moment by two or three times after the adsorption of the HU drug. Quantum molecular descriptors also suggest that the sensitivity and reactivity of the nanosheets are enhanced during the interaction with HU. Therefore, these nanosheets can be used as anti-cancer drug carriers.
Collapse
Affiliation(s)
- Afiya Akter Piya
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - A K M Akther Hossain
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka Bangladesh
| |
Collapse
|
4
|
Nishat M, Hossain MR, Hasan MM, Hossain MK, Hossain MA, Ahmed F. Interaction of Anagrelide drug molecule on pristine and doped boron nitride nanocages: a DFT, RDG, PCM and QTAIM investigation. J Biomol Struct Dyn 2023; 41:3413-3429. [PMID: 35272575 DOI: 10.1080/07391102.2022.2049369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 01/15/2023]
Abstract
Nowadays, a nanostructure-based drug delivery system is one of the most noticeable topics to be studied, and in this regard, boron nitride nanoclusters are promising drug carriers for targeted drug delivery systems. In this article, the interaction mechanism of Anagrelide (AG) drug with B12N12 and Al- and Ga-doped B12N12 nanocages have been investigated using DFT with B3LYP/6-31 G (d, p) method in both gas and water media. All our studied complexes are thermodynamically stable, and doped nanocage complexes have higher negative adsorption energy (EAd.) and negative solvation energy than AG/B12N12 complexes which correspond to the stability of these systems in both media. The negative highest EAd value is 64.98 kcal/mol (63.17 kcal/mol) and 65.69 kcal/mol (65.11 kcal/mol) in gas (water) media for complex F (AG/AlB11N12) and complex I (AG/GaB11N12) respectively, which refers to the highest stability of these systems. The enhanced values of dipole moment (from 12.40 (12.65) Debye to 17.21 (17.69) Debye in complex F (complex I)) also confirm their stability. The QTAIM and RDG analysis endorse the strong adsorption nature of the AG drug onto the AlB11N12, and GaB11N12 nanocages, which is consistent with the adsorption energy as chemisorption occurs for these complexes. According to the electronic properties, doped nanocages show high sensitivity that infers their promising nature for drug delivery purposes. Thus, complex F and complex I are promising drug delivery systems, and doped nanocages (AlB11N12 and GaB11N12) are better carriers than pristine nanocages for the AG drug delivery system.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maliha Nishat
- Department of Physics, Pabna University of Science and Technology, Pabna, Bangladesh
| | - Md Rakib Hossain
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Mehade Hasan
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Kamal Hossain
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| | - Md Abul Hossain
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
5
|
Munny KN, Ahmed T, Piya AA, Shamim SUD. Exploring the adsorption performance of doped graphene quantum dots as anticancer drug carriers for cisplatin by DFT, PCM, and COSMO approaches. Struct Chem 2023. [DOI: 10.1007/s11224-023-02150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Zhang L, Zhang JC, Shi LF, Cheng X, Chen JH, Sun WM. On the possibility of using the Ti@Si 16 superatom as a novel drug delivery carrier for different drugs: A DFT study. J Mol Graph Model 2023; 118:108378. [PMID: 36423518 DOI: 10.1016/j.jmgm.2022.108378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
The potential application of an experimentally synthesized superatom Ti@Si16 as a novel drug carrier for cisplatin (DDP), isoniazid (INH), acetylsalicylic acid (ASA), 5-fluorouracil (5-Fu), and favipiravir (FPV) has been explored by density functional theory. It is observed that the Pt atom of DDP can be effectively absorbed on Ti@Si16 via a "donation-back donation" electron transfer mechanism, resulting in a moderate adsorption energy of -19.95 kcal/mol for DDP@[Ti@Si16]. As for INH, it prefers to combine with Ti@Si16 via the N atom of pyridine ring by forming a strongly polar N-Si bond. Differently, the interaction between Ti@Si16 and the ASA, 5-Fu, and FPV drugs is dominated by the Van der Waals interaction. Our results reveal that DDP@[Ti@Si16] possesses a moderate recovery time under body temperature, which benefits the desorption of DDP from Ti@Si16. More importantly, the release of DDP drug from the Ti@Si16 surface can be effectively controlled by exerting small orientation external electric fields on the DDP@[Ti@Si16] complex. Therefore, this study demonstrates that Ti@Si16 can serve as a promising drug carrier for DDP, and thus will further expand its practical applications in the biomedical field.
Collapse
Affiliation(s)
- Li Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China; Department of Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, 365000, Fujian Province, PR China
| | - Jia-Chen Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Ling-Fei Shi
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Xin Cheng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Jing-Hua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China.
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
7
|
Muktadir MG, Alam A, Piya AA, Shamim SUD. Exploring the adsorption ability with sensitivity and reactivity of C 12-B 6N 6, C 12-Al 6N 6, and B 6N 6-Al 6N 6 heteronanocages towards the cisplatin drug: a DFT, AIM, and COSMO analysis. RSC Adv 2022; 12:29569-29584. [PMID: 36320781 PMCID: PMC9578514 DOI: 10.1039/d2ra04011e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022] Open
Abstract
The DFT study on the adsorption behaviour of the C24, B12N12, and Al12N12 nanocages and their heteronanocages towards the anticancer drug cisplatin (CP) was performed in gas and water media. Among the three pristine nanocages, Al12N12 exhibited high adsorption energy ranging from -1.98 to -1.63 eV in the gas phase and -1.47 to -1.39 eV in water media. However, their heterostructures C12-Al6N6 and B6N6-Al6N6 showed higher interaction energies (-2.22 eV and -2.14 eV for C12-Al6N6 and B6N6-Al6N6) with a significant amount of charge transfer. Noteworthy variations in electronic properties were confirmed by FMO analysis and DOS spectra analysis after the adsorption of the cisplatin drug on B12N12 and B6N6-Al6N6 nanocages. Furthermore, an analysis of quantum molecular descriptors unveiled salient decrement in global hardness and increments in electrophilicity index and global softness occurred after the adsorption of CP on B12N12 and B6N6-Al6N6. On the other hand, the above-mentioned fluctuations are not so noteworthy in the case of the adsorption of CP on Al12N12, C12-B6N6, and C12-Al6N6. Concededly, energy calculation, FMO analysis, ESP map, DOS spectra, quantum molecular descriptors, dipole moment, COSMO surface analysis, QTAIM analysis, and work function analysis predict that B12N12 and B6N6-Al6N6 nanocages exhibit high sensitivity towards CP drug molecules.
Collapse
Affiliation(s)
- Md Golam Muktadir
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Ariful Alam
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Afiya Akter Piya
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Siraj Ud Daula Shamim
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| |
Collapse
|
8
|
Ibrahim MAA, Rady ASSM, Mandarawe AMA, Mohamed LA, Shawky AM, Hasanin THA, Sidhom PA, Soliman MES, Moussa NAM. Adsorption of Chlormethine Anti-Cancer Drug on Pure and Aluminum-Doped Boron Nitride Nanocarriers: A Comparative DFT Study. Pharmaceuticals (Basel) 2022; 15:1181. [PMID: 36297293 PMCID: PMC9607567 DOI: 10.3390/ph15101181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 08/11/2023] Open
Abstract
The efficacy of pure and aluminum (Al)-doped boron nitride nanocarriers (B12N12 and AlB11N12) in adsorbing Chlormethine (CM), an anti-cancer drug, was comparatively dissected by means of the density functional theory method. The CM∙∙∙B12N12 and ∙∙∙AlB11N12 complexes were studied within two configurations, A and B, in which the adsorption process occurred via N∙∙∙ and Cl∙∙∙B/Al interactions, respectively. The electrostatic potential affirmations confirmed the opulent ability of the studied nanocarriers to engage in delivering CM via two prominent electrophilic sites (B and Al). Furthermore, the adsorption process within the CM∙∙∙AlB11N12 complexes was noticed to be more favorable compared to that within the CM∙∙∙B12N12 analog and showed interaction and adsorption energy values up to -59.68 and -52.40 kcal/mol, respectively, for configuration A. Symmetry-adapted perturbation theory results indicated that electrostatic forces were dominant in the adsorption process. Notably, the adsorption of CM over B12N12 and AlB11N12 nanocarriers exhibited predominant changes in their electronic properties. An elemental alteration was also revealed for the softness and hardness of B12N12 and AlB11N12 nanocarriers before and following the CM adsorption. Spontaneity and exothermic nature were obviously observed for the studied complexes and confirmed by the negative values of thermodynamic parameters. In line with energetic manifestation, Gibbs free energy and enthalpy change were drastically increased by the Al doping process, with values raised to -37.15 and -50.14 kcal/mol, respectively, for configuration A of the CM∙∙∙AlB11N12 complex. Conspicuous enhancement was noticed for the adsorption process in the water phase more than that in the gas phase and confirmed by the negative values of the solvation energy up to -53.50 kcal/mol for configuration A of the CM∙∙∙AlB11N12 complex. The obtained outcomes would be the linchpin for the future utilization of boron nitride as a nanocarrier.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Al-shimaa S. M. Rady
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Asmaa M. A. Mandarawe
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Lamiaa A. Mohamed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Tamer H. A. Hasanin
- Department of Chemistry, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Research Laboratory, School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
9
|
Trivalent and Pentavalent atoms doped Boron nitride nanosheets as Favipiravir drug carriers for the treatment of COVID-19 using computational approaches. COMPUT THEOR CHEM 2022; 1217:113902. [PMID: 36211195 PMCID: PMC9526002 DOI: 10.1016/j.comptc.2022.113902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022]
Abstract
In our DFT investigations, pristine BNNS as well as trivalent and pentavalent atoms doped BNNS have been taken into consideration for Favipiravir (FPV) drug carriers for the treatment of COVID-19. Among the nanosheets, In doped BNNS (BN(In)NS) interacts with FPV by favorable adsorption energies about −2.44 and −2.38 eV in gas and water media respectively. The charge transfer analysis also predicted that a significant amount of charge about 0.202e and 0.27e are transferred to BN(In)NS in gas and water media respectively. HOMO and LUMO energies are greatly affected by the adsorption of FPV on BN(In)NS and energy gap drastically reduced by about 38.80 % and 64.07 % in gas and water media respectively. Similar results are found from the global indices and work function analysis. Therefore, it is clearly seen that dopant In atom greatly modified the BNNS and enhanced the adsorption behavior along with sensitivity, reactivity, polarity towards the FPV.
Collapse
|
10
|
Messiad FA, Ammouchi N, Belhocine Y, Alhussain H, Ghoniem MG, Said RB, Ali FAM, Rahali S. In Search of Preferential Macrocyclic Hosts for Sulfur Mustard Sensing and Recognition: A Computational Investigation through the New Composite Method r 2SCAN-3c of the Key Factors Influencing the Host-Guest Interactions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2517. [PMID: 35893486 PMCID: PMC9329917 DOI: 10.3390/nano12152517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Sulfur mustard (SM) is a harmful warfare agent that poses a serious threat to human health and the environment. Thus, the design of porous materials capable of sensing and/or capturing SM is of utmost importance. In this paper, the interactions of SM and its derivatives with ethylpillar[5]arene (EtP[5]) and the interactions between SM and a variety of host macrocycles were investigated through molecular docking calculations and non-covalent interaction (NCI) analysis. The electronic quantum parameters were computed to assess the chemical sensing properties of the studied hosts toward SM. It was found that dispersion interactions contributed significantly to the overall complexation energy, leading to the stabilization of the investigated systems. DFT energy computations showed that SM was more efficiently complexed with DCMP[5] than the other hosts studied here. Furthermore, the studied macrocyclic containers could be used as host-based chemical sensors or receptors for SM. These findings could motivate experimenters to design efficient sensing and capturing materials for the detection of SM and its derivatives.
Collapse
Affiliation(s)
- Fatine Ali Messiad
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955, El Hadaik Road, Skikda 21000, Algeria;
- LRPCSI-Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, Université 20 Août 1955, Skikda 21000, Algeria
| | - Nesrine Ammouchi
- LRPCSI-Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, Université 20 Août 1955, Skikda 21000, Algeria
- Département de Technologie, Faculté de Technologie, Université 20 Août 1955, B.P. 26, Route d’El Hadaiek, Skikda 21000, Algeria
| | - Youghourta Belhocine
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955, El Hadaik Road, Skikda 21000, Algeria;
| | - Hanan Alhussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (H.A.); (M.G.G.); (F.A.M.A.)
| | - Monira Galal Ghoniem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (H.A.); (M.G.G.); (F.A.M.A.)
| | - Ridha Ben Said
- Department of Chemistry, College of Science and Arts, Qassim University, P.O. 53, Ar Rass 51921, Saudi Arabia;
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia
| | - Fatima Adam Mohamed Ali
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (H.A.); (M.G.G.); (F.A.M.A.)
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts, Qassim University, P.O. 53, Ar Rass 51921, Saudi Arabia;
| |
Collapse
|
11
|
Kamali F, Ebrahimzadeh-Rajaei G, Mohajeri S, Shamel A, Khodadadi-Moghaddam M. A computational design of X24Y24 (X = B, Al, and Y = N, P) nanoclusters as effective drug carriers for metformin anticancer drug: A DFT insight. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Ahmed T, Aminur Rahman M, Islam R, Akter Piya A, Ud Daula Shamim S. Unravelling the adsorption performance of BN, AlN, GaN and InN 2D nanosheets towards the ciclopirox, 5-fluorouracil and nitrosourea for anticancer drug delivery motive: A DFT-D with QTAIM, PCM and COSMO investigations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Qin Y, Wu X, Zhou N, Xu H, Tan J, Chen X, Peng Z, Nie C. The simulation study of transport performance of HU drugs on functionalized graphene nanosheets based on the Density Functional Theory. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Ema SN, Khaleque MA, Ghosh A, Piya AA, Habiba U, Shamim SUD. Surface adsorption of nitrosourea on pristine and doped (Al, Ga and In) boron nitride nanosheets as anticancer drug carriers: the DFT and COSMO insights. RSC Adv 2021; 11:36866-36883. [PMID: 35494400 PMCID: PMC9043538 DOI: 10.1039/d1ra07555a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
To minimize the side effects of chemotherapeutic drugs and enhance the effectiveness of cancer treatment, it is necessary to find a suitable drug delivery carrier for anticancer drugs. Recently nanomaterials are extensively being studied as drug vehicles and transport drugs in tumor cells. Using DFT calculations, the adsorption behavior with electronic sensitivity and reactivity of pristine and doped (Al, Ga and In)-BNNS towards the nitrosourea (NU) drug has been investigated in gas as well as water media. Our calculations showed that the NU drug is physically adsorbed on the pristine BNNS with −0.49 and −0.26 eV by transferring little amount of charge of about 0.033e and 0.046e in gas and water media in the most stable complex. But after replacing one of the central B atoms with an Al or Ga or In atom, the sensitivity of the doped BNNS remarkably enhances towards the NU drug molecules. The NU drug prefers to be chemically adsorbed on the BN(Al)NS, BN(Ga)NS and BN(In)NS by −1.28, −1.58 and −3.06 eV in the gas phase and −1.34, −1.23 and −3.65 eV in water media in the most stable complexes respectively. The large destabilization of LUMO energies after the adsorption of the NU drug on the BN(Al)NS, BN(Ga)NS and BN(In)NS significantly reduces their Eg from 4.37 to 0.69, 4.37 to 1.04 and 4.33 to 0.66 eV in the S1 complex respectively. The reduction of Eg of doped BNNS by the NU drug greatly enhances the electrical conductivity which can be converted to an electrical signal. Therefore, this doped BNNS can be used as a fascinating electronic sensor for the detection of NU drug molecules. Furthermore the work function of the doped BNNS was largely affected by the NU drug adsorption about 47.3%, 39.3% and 40.4% in the gas phase and 41.3%, 36.6% and 31.6% in water media in the S1 complex of NU/BN(Al)NS, NU/BN(Ga)NS and NU/BN(In)NS respectively. Thus, the doped BNNS may be used as a Ф type sensor for NU drug molecules. Doped (Al, Ga and In)-BNNS can be used as fascinating drug carriers for the NU drug.![]()
Collapse
Affiliation(s)
- Shania Nusrat Ema
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Md Abdul Khaleque
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Ananya Ghosh
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Afiya Akter Piya
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Umme Habiba
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Siraj Ud Daula Shamim
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| |
Collapse
|
15
|
Mawwa J, Shamim SUD, Khanom S, Hossain MK, Ahmed F. In-plane graphene/boron nitride heterostructures and their potential application as toxic gas sensors. RSC Adv 2021; 11:32810-32823. [PMID: 35493562 PMCID: PMC9042146 DOI: 10.1039/d1ra06304a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
After the successful synthesis of graphene/hexagonal boron nitride (h-BN) heterostructures, research works have been carried out for their plausible real-world device applications. Such 2D nanosheets gain great attention as they have shown promising gas sensing properties due to their high surface-to-volume ratio and unique electronic properties between graphene and h-BN. Herein, we report a first-principles density functional theory investigation of the structural and electronic properties of pristine graphene (PG), pristine BN, and their in-plane heterostructures employing B3LYP and dispersion-corrected van der Waals functional WB97XD with the 6-311G (d, p) basis set. We found that these predicted nanosheets show good structural stability with favorable cohesive energy and the bandgap gradually increases with the increase in the B–N concentration. We have also studied their adsorption properties toward toxic gas molecules (SO2 and CO). Among these heterostructures, G2BN2 exhibits greater adsorption energy of about −0.237 eV and −0.335 eV when exposed to SO2 and CO gas molecules, respectively. The electronic properties such as HOMO and LUMO energies, HOMO–LUMO energy gap, Fermi level, work function, and conductivity significantly changed after the adsorption of SO2 gas on the nanosheets except for PG, whereas these parameters remain almost the same after the adsorption of the CO gas molecule. Mulliken and natural bond orbital (NBO) charge analysis reveals that charge transfer occurs from gas molecules to the nanosheets except when SO2 is adsorbed onto PG. Although the adsorption energies for CO gas are slightly greater than those for SO2 gas for these nanosheets, all other investigations such as electronic properties, charge transfer analysis, molecular electrostatic potential (MEP) map, and global indices predict that these nanosheets are good sensors for SO2 gas than CO gas molecules. DFT methods were used to study the surface geometry of in-plane 2D graphene/BN heterostructures and their effects on the adsorption properties.![]()
Collapse
Affiliation(s)
- Jannatul Mawwa
- Department of Physics, Jahangirnagar University Dhaka Bangladesh
| | - Siraj Ud Daula Shamim
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Shamima Khanom
- Department of Physics, Jahangirnagar University Dhaka Bangladesh
| | - Md Kamal Hossain
- Department of Physics, Jahangirnagar University Dhaka Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University Dhaka Bangladesh
| |
Collapse
|
16
|
Adsorption performance of boron nitride nanomaterials as effective drug delivery carriers for anticancer drugs based on density functional theory. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|