1
|
Sala-Hamrick KE, Tapaswi A, Polemi KM, Nguyen VK, Colacino JA. High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47002. [PMID: 38568856 PMCID: PMC10990114 DOI: 10.1289/ehp12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND There is a suite of chemicals, including metals, pesticides, and personal care product compounds, which are commonly detected at high levels in US Center for Disease Control's National Health and Nutrition Examination Survey (NHANES) chemical biomarker screens. Whether these chemicals influence development of breast cancer is not well understood. OBJECTIVES The objectives were to perform an unbiased concentration-dependent assessment of these chemicals, to quantify differences in cancer-specific genes and pathways, to describe if these differences occur at human population-relevant concentrations, and to specifically test for differences in markers of stemness and cellular plasticity. METHODS We treated nontumorigenic mammary epithelial cells, MCF10A, with 21 chemicals at four concentrations (25 nM , 250 nM , 2.5 μ M , and 25 μ M ) for 48 h. We conducted RNA-sequencing for these 408 samples, adapting the plexWell plate-based RNA-sequencing method to analyze differences in gene expression. We calculated gene and biological pathway-specific benchmark concentrations (BMCs) using BMDExpress3, identifying differentially expressed genes and generating the best fit benchmark concentration models for each chemical across all genes. We identified enriched biological processes and pathways for each chemical and tested whether chemical exposures change predicted cell type distributions. We contextualized benchmark concentrations relative to human population biomarker concentrations in NHANES. RESULTS We detected chemical concentration-dependent differences in gene expression for thousands of genes. Enrichment and cell type distribution analyses showed benchmark concentration responses correlated with differences in breast cancer-related pathways, including induction of basal-like characteristics for some chemicals, including arsenic, lead, copper, and methyl paraben. Comparison of benchmark data to NHANES chemical biomarker (urine or blood) concentrations indicated an overlap between exposure levels and levels sufficient to cause a gene expression response. DISCUSSION These analyses revealed that many of these 21 chemicals resulted in differences in genes and pathways involved in breast cancer in vitro at human exposure-relevant concentrations. https://doi.org/10.1289/EHP12886.
Collapse
Affiliation(s)
| | - Anagha Tapaswi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M. Polemi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Vy K. Nguyen
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Program in the Environment, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Kay JE, Brody JG, Schwarzman M, Rudel RA. Application of the Key Characteristics Framework to Identify Potential Breast Carcinogens Using Publicly Available in Vivo, in Vitro, and in Silico Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17002. [PMID: 38197648 PMCID: PMC10777819 DOI: 10.1289/ehp13233] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Chemicals that induce mammary tumors in rodents or activate estrogen or progesterone signaling are likely to increase breast cancer (BC) risk. Identifying chemicals with these activities can prompt steps to protect human health. OBJECTIVES We compiled data on rodent tumors, endocrine activity, and genotoxicity to assess the key characteristics (KCs) of rodent mammary carcinogens (MCs), and to identify other chemicals that exhibit these effects and may therefore increase BC risk. METHODS Using authoritative databases, including International Agency for Research on Cancer (IARC) Monographs and the US Environmental Protection's (EPA) ToxCast, we selected chemicals that induce mammary tumors in rodents, stimulate estradiol or progesterone synthesis, or activate the estrogen receptor (ER) in vitro. We classified these chemicals by their genotoxicity and strength of endocrine activity and calculated the overrepresentation (enrichment) of these KCs among MCs. Finally, we evaluated whether these KCs predict whether a chemical is likely to induce mammary tumors. RESULTS We identified 279 MCs and an additional 642 chemicals that stimulate estrogen or progesterone signaling. MCs were significantly enriched for steroidogenicity, ER agonism, and genotoxicity, supporting the use of these KCs to predict whether a chemical is likely to induce rodent mammary tumors and, by inference, increase BC risk. More MCs were steroidogens than ER agonists, and many increased both estradiol and progesterone. Enrichment among MCs was greater for strong endocrine activity vs. weak or inactive, with a significant trend. DISCUSSION We identified hundreds of compounds that have biological activities that could increase BC risk and demonstrated that these activities are enriched among MCs. We argue that many of these should not be considered low hazard without investigating their ability to affect the breast, and chemicals with the strongest evidence can be targeted for exposure reduction. We describe ways to strengthen hazard identification, including improved assessments for mammary effects, developing assays for more KCs, and more comprehensive chemical testing. https://doi.org/10.1289/EHP13233.
Collapse
Affiliation(s)
| | | | - Megan Schwarzman
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Family and Community Medicine, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
3
|
Oku Y, Madia F, Lau P, Paparella M, McGovern T, Luijten M, Jacobs MN. Analyses of Transcriptomics Cell Signalling for Pre-Screening Applications in the Integrated Approach for Testing and Assessment of Non-Genotoxic Carcinogens. Int J Mol Sci 2022; 23:ijms232112718. [PMID: 36361516 PMCID: PMC9659232 DOI: 10.3390/ijms232112718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.
Collapse
Affiliation(s)
- Yusuke Oku
- The Organisation for Economic Cooperation and Development (OECD), 2 Rue Andre Pascal, 75016 Paris, France
- Correspondence: (Y.O.); (M.N.J.)
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Martin Paparella
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innbruck, Austria
| | - Timothy McGovern
- US Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20901, USA
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA Utrecht, The Netherlands
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazard (CRCE), Public Health England (PHE), Chilton OX11 0RQ, Oxfordshire, UK
- Correspondence: (Y.O.); (M.N.J.)
| |
Collapse
|
4
|
Polemi KM, Nguyen VK, Heidt J, Kahana A, Jolliet O, Colacino JA. Identifying the link between chemical exposures and breast cancer in African American women via integrated in vitro and exposure biomarker data. Toxicology 2021; 463:152964. [PMID: 34600088 PMCID: PMC8593892 DOI: 10.1016/j.tox.2021.152964] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022]
Abstract
Among women, breast cancer is the most prevalent form of cancer worldwide and has the second highest mortality rate of any cancer in the United States. The breast cancer related death rate is 40 % higher in non-Hispanic Black women compared to non-Hispanic White women. The incidence of triple negative breast cancer (TNBC), an aggressive subtype of breast cancer for which there is no targeted therapy, is also approximately three times higher for Black, relative to, White women. The drivers of these differences are poorly understood. Here, we aimed to identify chemical exposures which play a role in breast cancer disparities. Using chemical biomonitoring data from the National Health and Nutrition Examination Survey (NHANES) and biological activity data from the EPA's ToxCast program, we assessed the toxicological profiles of chemicals to which US Black women are disproportionately exposed. We conducted a literature search to identify breast cancer targets in ToxCast to analyze the response of chemicals with exposure disparities in these assays. Forty-three chemical biomarkers are significantly higher in Black women. Investigation of these chemicals in ToxCast resulted in 32,683 assays for analysis, 5172 of which contained nonzero values for the concentration at which the dose-response fitted model reaches the cutoff considered "active". Of these chemicals BPA, PFOS, and thiram are most comprehensively assayed. 2,5-dichlorophenol, 1,4-dichlorobenzene, and methyl and propyl parabens had higher biomarker concentrations in Black women and moderate testing and activity in ToxCast. The distribution of active concentrations for these chemicals in ToxCast assays are comparable to biomarker concentrations in Black women NHANES participants. Through this integrated analysis, we identify that multiple chemicals, including thiram, propylparaben, and p,p' DDE, have disproportionate exposures in Black women and have breast cancer associated biological activity at human exposure relevant doses.
Collapse
Affiliation(s)
- Katelyn M Polemi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vy K Nguyen
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Julien Heidt
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Adam Kahana
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Madia F, Pillo G, Worth A, Corvi R, Prieto P. Integration of data across toxicity endpoints for improved safety assessment of chemicals: the example of carcinogenicity assessment. Arch Toxicol 2021; 95:1971-1993. [PMID: 33830278 PMCID: PMC8166685 DOI: 10.1007/s00204-021-03035-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
In view of the need to enhance the assessment of consumer products called for in the EU Chemicals Strategy for Sustainability, we developed a methodology for evaluating hazard by combining information across different systemic toxicity endpoints and integrating the information with new approach methodologies. This integrates mechanistic information with a view to avoiding redundant in vivo studies, minimising reliance on apical endpoint tests and ultimately devising efficient testing strategies. Here, we present the application of our methodology to carcinogenicity assessment, mapping the available information from toxicity test methods across endpoints to the key characteristics of carcinogens. Test methods are deconstructed to allow the information they provide to be organised in a systematic way, enabling the description of the toxicity mechanisms leading to the adverse outcome. This integrated approach provides a flexible and resource-efficient means of fully exploiting test methods for which test guidelines are available to fulfil regulatory requirements for systemic toxicity assessment as well as identifying where new methods can be integrated.
Collapse
Affiliation(s)
- Federica Madia
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy.
| | - Gelsomina Pillo
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Pilar Prieto
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| |
Collapse
|
6
|
Kripke M, Brody JG, Hawk E, Hernandez AB, Hoppin PJ, Jacobs MM, Rudel RA, Rebbeck TR. Rethinking Environmental Carcinogenesis. Cancer Epidemiol Biomarkers Prev 2020; 29:1870-1875. [PMID: 33004408 DOI: 10.1158/1055-9965.epi-20-0541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
The 2010 report of the President's Cancer Panel concluded that the burden of cancer from chemical exposures is substantial, while the programs for testing and regulation of carcinogens remain inadequate. New research on the role of early life exposures and the ability of chemicals to act via multiple biological pathways, including immunosuppression, inflammation, and endocrine disruption as well as mutagenesis, further supports the potential for chemicals and chemical mixtures to influence disease. Epidemiologic observations, such as higher leukemia incidence in children living near roadways and industrial sources of air pollution, and new in vitro technologies that decode carcinogenesis at the molecular level, illustrate the diverse evidence that primary prevention of some cancers may be achieved by reducing harmful chemical exposures. The path forward requires cross-disciplinary approaches, increased environmental research investment, system-wide collaboration to develop safer economic alternatives, and community engagement to support evidence-informed action. Engagement by cancer researchers to integrate environmental risk factors into prevention initiatives holds tremendous promise for reducing the rates of disease.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Margaret Kripke
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ernest Hawk
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Polly J Hoppin
- University of Massachusetts Lowell and Lowell Center for Sustainable Production, Lowell, Massachusetts
| | - Molly M Jacobs
- University of Massachusetts Lowell and Lowell Center for Sustainable Production, Lowell, Massachusetts
| | | | - Timothy R Rebbeck
- Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
7
|
Watford S, Edwards S, Angrish M, Judson RS, Paul Friedman K. Progress in data interoperability to support computational toxicology and chemical safety evaluation. Toxicol Appl Pharmacol 2019; 380:114707. [PMID: 31404555 PMCID: PMC7705611 DOI: 10.1016/j.taap.2019.114707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
New approach methodologies (NAMs) in chemical safety evaluation are being explored to address the current public health implications of human environmental exposures to chemicals with limited or no data for assessment. For over a decade since a push toward "Toxicity Testing in the 21st Century," the field has focused on massive data generation efforts to inform computational approaches for preliminary hazard identification, adverse outcome pathways that link molecular initiating events and key events to apical outcomes, and high-throughput approaches to risk-based ratios of bioactivity and exposure to inform relative priority and safety assessment. Projects like the interagency Tox21 program and the US EPA ToxCast program have generated dose-response information on thousands of chemicals, identified and aggregated information from legacy systems, and created tools for access and analysis. The resulting information has been used to develop computational models as viable options for regulatory applications. This progress has introduced challenges in data management that are new, but not unique, to toxicology. Some of the key questions require critical thinking and solutions to promote semantic interoperability, including: (1) identification of bioactivity information from NAMs that might be related to a biological process; (2) identification of legacy hazard information that might be related to a key event or apical outcomes of interest; and, (3) integration of these NAM and traditional data for computational modeling and prediction of complex apical outcomes such as carcinogenesis. This work reviews a number of toxicology-related efforts specifically related to bioactivity and toxicological data interoperability based on the goals established by Findable, Accessible, Interoperable, and Reusable (FAIR) Data Principles. These efforts are essential to enable better integration of NAM and traditional toxicology information to support data-driven toxicology applications.
Collapse
Affiliation(s)
- Sean Watford
- Booz Allen Hamilton, Rockville, MD 20852, USA; National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Stephen Edwards
- Research Triangle Institute International, Research Triangle Park, NC 27709, USA
| | - Michelle Angrish
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard S Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
8
|
Madia F, Worth A, Whelan M, Corvi R. Carcinogenicity assessment: Addressing the challenges of cancer and chemicals in the environment. ENVIRONMENT INTERNATIONAL 2019; 128:417-429. [PMID: 31078876 PMCID: PMC6520474 DOI: 10.1016/j.envint.2019.04.067] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/10/2019] [Accepted: 04/27/2019] [Indexed: 05/10/2023]
Abstract
Cancer is a key public health concern, being the second leading cause of worldwide morbidity and mortality after cardiovascular diseases. At the global level, cancer prevalence, incidence and mortality rates are increasing. These trends are not fully explained by a growing and ageing population: with marked regional and socioeconomic disparities, lifestyle factors, the resources dedicated to preventive medicine, and the occupational and environmental control of hazardous chemicals all playing a role. While it is difficult to establish the contribution of chemical exposure to the societal burden of cancer, a number of measures can be taken to better assess the carcinogenic properties of chemicals and manage their risks. This paper discusses how these measures can be informed not only by the traditional data streams of regulatory toxicology, but also by using new toxicological assessment methods, along with indicators of public health status based on biomonitoring. These diverse evidence streams have the potential to form the basis of an integrated and more effective approach to cancer prevention.
Collapse
Affiliation(s)
- Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
9
|
Watford SM, Grashow RG, De La Rosa VY, Rudel RA, Friedman KP, Martin MT. Novel application of normalized pointwise mutual information (NPMI) to mine biomedical literature for gene sets associated with disease: use case in breast carcinogenesis. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 7:46-57. [PMID: 32274464 PMCID: PMC7144681 DOI: 10.1016/j.comtox.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advances in technology within biomedical sciences have led to an inundation of data across many fields, raising new challenges in how best to integrate and analyze these resources. For example, rapid chemical screening programs like the US Environmental Protection Agency's ToxCast and the collaborative effort, Tox21, have produced massive amounts of information on putative chemical mechanisms where assay targets are identified as genes; however, systematically linking these hypothesized mechanisms with in vivo toxicity endpoints like disease outcomes remains problematic. Herein we present a novel use of normalized pointwise mutual information (NPMI) to mine biomedical literature for gene associations with biological concepts as represented by Medical Subject Headings (MeSH terms) in PubMed. Resources that tag genes to articles were integrated, then cross-species orthologs were identified using UniRef50 clusters. MeSH term frequency was normalized to reflect the MeSH tree structure, and then the resulting GeneID-MeSH associations were ranked using NPMI. The resulting network, called Entity MeSH Co-occurrence Network (EMCON), is a scalable resource for the identification and ranking of genes for a given topic of interest. The utility of EMCON was evaluated with the use case of breast carcinogenesis. Topics relevant to breast carcinogenesis were used to query EMCON and retrieve genes important to each topic. A breast cancer gene set was compiled through expert literature review (ELR) to assess performance of the search results. We found that the results from EMCON ranked the breast cancer genes from ELR higher than randomly selected genes with a recall of 0.98. Precision of the top five genes for selected topics was calculated as 0.87. This work demonstrates that EMCON can be used to link in vitro results to possible biological outcomes, thus aiding in generation of testable hypotheses for furthering understanding of biological function and the contribution of chemical exposures to disease.
Collapse
Affiliation(s)
- Sean M Watford
- ORAU, contractor to U.S. Environmental Protection Agency through the National Student Services Contract, Oak Ridge, TN
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Rachel G Grashow
- Silent Spring Institute, Newton, MA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Vanessa Y De La Rosa
- Silent Spring Institute, Newton, MA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA
| | | | | | - Matthew T Martin
- U.S. Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, NC, USA
- Currently at Pfizer Worldwide Research & Development, Groton, CT, USA
| |
Collapse
|