1
|
Beausoleil C, Thébault A, Andersson P, Cabaton NJ, Ermler S, Fromenty B, Garoche C, Griffin JL, Hoffmann S, Kamstra JH, Kubickova B, Lenters V, Kos VM, Poupin N, Remy S, Sapounidou M, Zalko D, Legler J, Jacobs MN, Rousselle C. Weight of evidence evaluation of the metabolism disrupting effects of triphenyl phosphate using an expert knowledge elicitation approach. Toxicol Appl Pharmacol 2024; 489:116995. [PMID: 38862081 DOI: 10.1016/j.taap.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Identification of Endocrine-Disrupting Chemicals (EDCs) in a regulatory context requires a high level of evidence. However, lines of evidence (e.g. human, in vivo, in vitro or in silico) are heterogeneous and incomplete for quantifying evidence of the adverse effects and mechanisms involved. To date, for the regulatory appraisal of metabolism-disrupting chemicals (MDCs), no harmonised guidance to assess the weight of evidence has been developed at the EU or international level. To explore how to develop this, we applied a formal Expert Knowledge Elicitation (EKE) approach within the European GOLIATH project. EKE captures expert judgment in a quantitative manner and provides an estimate of uncertainty of the final opinion. As a proof of principle, we selected one suspected MDC -triphenyl phosphate (TPP) - based on its related adverse endpoints (obesity/adipogenicity) relevant to metabolic disruption and a putative Molecular Initiating Event (MIE): activation of peroxisome proliferator activated receptor gamma (PPARγ). We conducted a systematic literature review and assessed the quality of the lines of evidence with two independent groups of experts within GOLIATH, with the objective of categorising the metabolic disruption properties of TPP, by applying an EKE approach. Having followed the entire process separately, both groups arrived at the same conclusion, designating TPP as a "suspected MDC" with an overall quantitative agreement exceeding 85%, indicating robust reproducibility. The EKE method provides to be an important way to bring together scientists with diverse expertise and is recommended for future work in this area.
Collapse
Affiliation(s)
- Claire Beausoleil
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France.
| | - Anne Thébault
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France
| | | | - Nicolas J Cabaton
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Sibylle Ermler
- Department of Life Sciences, Centre of Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, UB8 3PH Uxbridge, United Kingdom
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Julian L Griffin
- The Rowett Institute, Foresterhill Health Campus, University of Aberdeen, Aberdeen, UK
| | | | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Barbara Kubickova
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton OX11 0RQ, Oxon, United Kingdom
| | - Virissa Lenters
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nathalie Poupin
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Daniel Zalko
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Juliette Legler
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Miriam N Jacobs
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton OX11 0RQ, Oxon, United Kingdom
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France
| |
Collapse
|
2
|
Kopańska K, Rodríguez-Belenguer P, Llopis-Lorente J, Trenor B, Saiz J, Pastor M. Uncertainty assessment of proarrhythmia predictions derived from multi-level in silico models. Arch Toxicol 2023; 97:2721-2740. [PMID: 37528229 PMCID: PMC10474996 DOI: 10.1007/s00204-023-03557-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
In silico methods can be used for an early assessment of arrhythmogenic properties of drug candidates. However, their use for decision-making is conditioned by the possibility to estimate the predictions' uncertainty. This work describes our efforts to develop uncertainty quantification methods for the predictions produced by multi-level proarrhythmia models. In silico models used in this field usually start with experimental or predicted IC50 values that describe drug-induced ion channel blockade. Using such inputs, an electrophysiological model computes how the ion channel inhibition, exerted by a drug in a certain concentration, translates to an altered shape and duration of the action potential in cardiac cells, which can be represented as arrhythmogenic risk biomarkers such as the APD90. Using this framework, we identify the main sources of aleatory and epistemic uncertainties and propose a method based on probabilistic simulations that replaces single-point estimates predicted using multiple input values, including the IC50s and the electrophysiological parameters, by distributions of values. Two selected variability types associated with these inputs are then propagated through the multi-level model to estimate their impact on the uncertainty levels in the output, expressed by means of intervals. The proposed approach yields single predictions of arrhythmogenic risk biomarkers together with value intervals, providing a more comprehensive and realistic description of drug effects on a human population. The methodology was tested by predicting arrhythmogenic biomarkers on a series of twelve well-characterised marketed drugs, belonging to different arrhythmogenic risk classes.
Collapse
Affiliation(s)
- Karolina Kopańska
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Research Institute, Barcelona, Spain
| | - Pablo Rodríguez-Belenguer
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Research Institute, Barcelona, Spain
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Universitat de València, Valencia, Spain
| | - Jordi Llopis-Lorente
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Valencia, Spain
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Valencia, Spain
| | - Manuel Pastor
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
3
|
Wang Y, Qin M, Wang X, Han J, Chen R, Zhang M, Gu W. Residual behaviors and metabolic pathway of ethylparaben in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113124. [PMID: 34968799 DOI: 10.1016/j.ecoenv.2021.113124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Parabens are commonly used as preservatives in foodstuffs, cosmetics, and pharmaceutical products. The widespread use of parabens has led to their leaking into the environment. Concerns about the safety of parabens have recently increased due to their potential endocrine-disrupting effects as an emerging contaminant. Thus, it is necessary to study the metabolism of parabens in vivo. METHODS In this study, Drosophila melanogaster in males and females were exposed to ethylparaben (EP) concentration group (300 mg/L, 700 mg/L, and 1000 mg/L), and control group (0 mg/L) by the capillary feeding assay (CAFE). We quantified the activity of the detoxification-related carboxylesterase (CarE). The contents of EP metabolites in D. melanogaster, including p-hydroxybenzoic acid (PHBA), methylparaben (MP), and intact EP were carried out by high-performance liquid chromatography (HPLC). The regression model between EP metabolites (PHBA and MP) and CarE was developed using the Fourier series fitting method. RESULTS The general level of EP metabolites (PHBA, MP, and intact EP) accumulation was accounted for 5.6-11.5% in D. melanogaster. As EP accumulated, the activity of CarE increased, and the activity of CarE in females was higher than males, which is inconsistent with the result of EP intake dose. Additionally, there were significant differences in the proportion of EP metabolites between female and male flies, and the results of sex comparison were different depending on the EP treated groups and EP metabolites. In general, PHBA of EP hydrolytic product and MP of EP transesterification product in D. melanogaster were 41.4-63.9% and 10.4-24.6%, respectively. In terms of the rest of the EP existed in intact form and ranged from 22.4% to 34.0%. Moreover, the EP metabolites in the conjugated form were higher than those in the free form. The regression model between EP metabolites and CarE was established, showing that the CarE activity can be used to estimate the content of PHBA and MP. CONCLUSION The result indicates that the EP can accumulate in the body through food. Hydrolysis is the main metabolic pathway of EP in D. melanogaster, and transesterification is another metabolic pathway of EP. Additionally, the EP metabolites in flies mainly exist in conjugated form. Furthermore, the Fourier series fitting method model between EP metabolites and CarE, providing theoretical support to study the dose-effect relationship between metabolites of parabens and CarE. This study not only provides a mathematical basis for the safety evaluation of parabens, but also provides support for the further study of the toxicological effects of parabens.
Collapse
Affiliation(s)
- Yuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengbei Qin
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiao Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Junling Han
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ruidun Chen
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|