• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5043708)   Today's Articles (1042)
For: Yordanova D, Kuseva C, Tankova K, Pavlov T, Chankov G, Chapkanov A, Gissi A, Sobanski T, Schultz TW, Mekenyan OG. Using metabolic information for categorization and read-across in the OECD QSAR Toolbox. ACTA ACUST UNITED AC 2019;12:100102. [DOI: 10.1016/j.comtox.2019.100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Number Cited by Other Article(s)
1
Hagan B, Groff L, Patlewicz G, Shah I. Toward Metabolic Similarity in Read-Across: A Case Study Using Graph Convolutional Networks to Predict Genotoxicity Outcomes from Simulated Metabolic Networks. Chem Res Toxicol 2025. [PMID: 40432291 DOI: 10.1021/acs.chemrestox.5c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
2
Groff L, Williams A, Shah I, Patlewicz G. MetSim: Integrated Programmatic Access and Pathway Management for Xenobiotic Metabolism Simulators. Chem Res Toxicol 2024;37:685-697. [PMID: 38598715 PMCID: PMC11325951 DOI: 10.1021/acs.chemrestox.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
3
Noga M, Michalska A, Jurowski K. The prediction of hydrolysis and biodegradation of organophosphorus-based chemical warfare agents (G-series and V-series) using toxicology in silico methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024;272:116018. [PMID: 38325275 DOI: 10.1016/j.ecoenv.2024.116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
4
Singh AV, Varma M, Laux P, Choudhary S, Datusalia AK, Gupta N, Luch A, Gandhi A, Kulkarni P, Nath B. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Arch Toxicol 2023;97:963-979. [PMID: 36878992 PMCID: PMC10025217 DOI: 10.1007/s00204-023-03471-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
5
Boyce M, Meyer B, Grulke C, Lizarraga L, Patlewicz G. Comparing the performance and coverage of selected in silico (liver) metabolism tools relative to reported studies in the literature to inform analogue selection in read-across: A case study. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022;21:1-15. [PMID: 35386221 PMCID: PMC8979226 DOI: 10.1016/j.comtox.2021.100208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
6
Yordanova DG, Patterson TJ, North CM, Camenzuli L, Chapkanov AS, Pavlov TS, Mekenyan OG. Selection of Representative Constituents for Unknown, Variable, Complex, or Biological Origin Substance Assessment Based on Hierarchical Clustering. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021;40:3205-3218. [PMID: 34499773 DOI: 10.1002/etc.5206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 05/20/2023]
7
Kutsarova S, Mehmed A, Cherkezova D, Stoeva S, Georgiev M, Petkov T, Chapkanov A, Schultz TW, Mekenyan OG. Automated read-across workflow for predicting acute oral toxicity: I. The decision scheme in the QSAR toolbox. Regul Toxicol Pharmacol 2021;125:105015. [PMID: 34293429 DOI: 10.1016/j.yrtph.2021.105015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/17/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
8
Yordanova DG, Schultz TW, Kuseva CD, Mekenyan OG. Assessing metabolic similarity for read-across predictions. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.comtox.2021.100160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
9
Petkov P, Ivanova H, Schultz T, Mekenyan O. Criteria for assessing the reliability of toxicity predictions: I. TIMES Ames mutagenicity model. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.comtox.2020.100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA