1
|
Mao J, Rothkopf CA, Stocker AA. Adaptation optimizes sensory encoding for future stimuli. PLoS Comput Biol 2025; 21:e1012746. [PMID: 39823517 PMCID: PMC11771873 DOI: 10.1371/journal.pcbi.1012746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/27/2025] [Accepted: 12/21/2024] [Indexed: 01/19/2025] Open
Abstract
Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli. We first quantified human subjects' ability to discriminate visual orientation under different adaptation conditions. Using an information theoretic analysis, we found that adaptation leads to a reallocation of coding resources such that encoding accuracy peaks at the mean orientation of the adaptor while total coding capacity remains constant. We then asked whether this characteristic change in encoding accuracy is predicted by the temporal statistics of natural visual input. Analyzing the retinal input of freely behaving human subjects showed that the distribution of local visual orientations in the retinal input stream indeed peaks at the mean orientation of the preceding input history (i.e., the adaptor). We further tested our hypothesis by analyzing the internal sensory representations of a recurrent neural network trained to predict the next frame of natural scene videos (PredNet). Simulating our human adaptation experiment with PredNet, we found that the network exhibited the same change in encoding accuracy as observed in human subjects. Taken together, our results suggest that adaptation-induced changes in encoding accuracy prepare the visual system for future stimuli.
Collapse
Affiliation(s)
- Jiang Mao
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Alan A Stocker
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Mohammadi M, Carriot J, Mackrous I, Cullen KE, Chacron MJ. Neural populations within macaque early vestibular pathways are adapted to encode natural self-motion. PLoS Biol 2024; 22:e3002623. [PMID: 38687807 PMCID: PMC11086886 DOI: 10.1371/journal.pbio.3002623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/10/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
How the activities of large neural populations are integrated in the brain to ensure accurate perception and behavior remains a central problem in systems neuroscience. Here, we investigated population coding of naturalistic self-motion by neurons within early vestibular pathways in rhesus macaques (Macacca mulatta). While vestibular neurons displayed similar dynamic tuning to self-motion, inspection of their spike trains revealed significant heterogeneity. Further analysis revealed that, during natural but not artificial stimulation, heterogeneity resulted primarily from variability across neurons as opposed to trial-to-trial variability. Interestingly, vestibular neurons displayed different correlation structures during naturalistic and artificial self-motion. Specifically, while correlations due to the stimulus (i.e., signal correlations) did not differ, correlations between the trial-to-trial variabilities of neural responses (i.e., noise correlations) were instead significantly positive during naturalistic but not artificial stimulation. Using computational modeling, we show that positive noise correlations during naturalistic stimulation benefits information transmission by heterogeneous vestibular neural populations. Taken together, our results provide evidence that neurons within early vestibular pathways are adapted to the statistics of natural self-motion stimuli at the population level. We suggest that similar adaptations will be found in other systems and species.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Canada
| | - Jerome Carriot
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | |
Collapse
|
3
|
Lube AJ, Ma X, Carlson BA. Spike timing-dependent plasticity alters electrosensory neuron synaptic strength in vitro but does not consistently predict changes in sensory tuning in vivo. J Neurophysiol 2023; 129:1127-1144. [PMID: 37073981 PMCID: PMC10151048 DOI: 10.1152/jn.00498.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023] Open
Abstract
How do sensory systems optimize detection of behaviorally relevant stimuli when the sensory environment is constantly changing? We addressed the role of spike timing-dependent plasticity (STDP) in driving changes in synaptic strength in a sensory pathway and whether those changes in synaptic strength could alter sensory tuning. It is challenging to precisely control temporal patterns of synaptic activity in vivo and replicate those patterns in vitro in behaviorally relevant ways. This makes it difficult to make connections between STDP-induced changes in synaptic physiology and plasticity in sensory systems. Using the mormyrid species Brevimyrus niger and Brienomyrus brachyistius, which produce electric organ discharges for electrolocation and communication, we can precisely control the timing of synaptic input in vivo and replicate these same temporal patterns of synaptic input in vitro. In central electrosensory neurons in the electric communication pathway, using whole cell intracellular recordings in vitro, we paired presynaptic input with postsynaptic spiking at different delays. Using whole cell intracellular recordings in awake, behaving fish, we paired sensory stimulation with postsynaptic spiking using the same delays. We found that Hebbian STDP predictably alters sensory tuning in vitro and is mediated by NMDA receptors. However, the change in synaptic responses induced by sensory stimulation in vivo did not adhere to the direction predicted by the STDP observed in vitro. Further analysis suggests that this difference is influenced by polysynaptic activity, including inhibitory interneurons. Our findings suggest that STDP rules operating at identified synapses may not drive predictable changes in sensory responses at the circuit level.NEW & NOTEWORTHY We replicated behaviorally relevant temporal patterns of synaptic activity in vitro and used the same patterns during sensory stimulation in vivo. There was a Hebbian spike timing-dependent plasticity (STDP) pattern in vitro, but sensory responses in vivo did not shift according to STDP predictions. Analysis suggests that this disparity is influenced by differences in polysynaptic activity, including inhibitory interneurons. These results suggest that STDP rules at synapses in vitro do not necessarily apply to circuits in vivo.
Collapse
Affiliation(s)
- Adalee J Lube
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Xiaofeng Ma
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Bottemanne H, Barberousse A, Fossati P. [Multidimensional and computational theory of mood]. Encephale 2022; 48:682-699. [PMID: 35987716 DOI: 10.1016/j.encep.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/22/2022]
Abstract
What is mood? Despite its crucial place in psychiatric nosography and cognitive science, it is still difficult to delimit its conceptual ground. The distinction between emotion and mood is ambiguous: mood is often presented as an affective state that is more prolonged and less intense than emotion, or as an affective polarity distinguishing high and low mood swinging around a baseline. However, these definitions do not match the clinical reality of mood disorders such as unipolar depression and bipolar disorder, and do not allow us to understand the effect of mood on behaviour, perception and cognition. In this paper, we propose a multidimensional and computational theory of mood inspired by contemporary hypotheses in theoretical neuroscience and philosophy of emotion. After suggesting an operational distinction between emotion and mood, we show how a succession of emotions can cumulatively generate congruent mood over time, making mood an emerging state from emotion. We then present how mood determines mental and behavioral states when interacting with the environment, constituting a dispositional state of emotion, perception, belief, and action. Using this theoretical framework, we propose a computational representation of the emerging and dispositional dimensions of mood by formalizing mood as a layer of third-order Bayesian beliefs encoding the precision of emotion, and regulated by prediction errors associated with interoceptive predictions. Finally, we show how this theoretical framework sheds light on the processes involved in mood disorders, the emergence of mood congruent beliefs, or the mechanisms of antidepressant treatments in clinical psychiatry.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), Sorbonne University/CNRS/Inserm, Paris, France; Department of philosophy, Sciences Normes Démocratie research unit, Sorbonne university/CNRS, Paris, France; Department of psychiatry, DMU Neuroscience, Pitié-Salpêtrière hospital, Sorbonne university/Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Anouk Barberousse
- Department of philosophy, Sciences Normes Démocratie research unit, Sorbonne university/CNRS, Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), Sorbonne University/CNRS/Inserm, Paris, France; Department of psychiatry, DMU Neuroscience, Pitié-Salpêtrière hospital, Sorbonne university/Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
5
|
Carriot J, McAllister G, Hooshangnejad H, Mackrous I, Cullen KE, Chacron MJ. Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways. Nat Commun 2022; 13:2612. [PMID: 35551186 PMCID: PMC9098492 DOI: 10.1038/s41467-022-30348-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Sensory systems must continuously adapt to optimally encode stimuli encountered within the natural environment. The prevailing view is that such optimal coding comes at the cost of increased ambiguity, yet to date, prior studies have focused on artificial stimuli. Accordingly, here we investigated whether such a trade-off between optimality and ambiguity exists in the encoding of natural stimuli in the vestibular system. We recorded vestibular nuclei and their target vestibular thalamocortical neurons during naturalistic and artificial self-motion stimulation. Surprisingly, we found no trade-off between optimality and ambiguity. Using computational methods, we demonstrate that thalamocortical neural adaptation in the form of contrast gain control actually reduces coding ambiguity without compromising the optimality of coding under naturalistic but not artificial stimulation. Thus, taken together, our results challenge the common wisdom that adaptation leads to ambiguity and instead suggest an essential role in underlying unambiguous optimized encoding of natural stimuli.
Collapse
Affiliation(s)
- Jerome Carriot
- Department of Physiology, McGill University, Montréal, Canada
| | | | - Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | | | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
6
|
Carriot J, Cullen KE, Chacron MJ. The neural basis for violations of Weber's law in self-motion perception. Proc Natl Acad Sci U S A 2021; 118:e2025061118. [PMID: 34475203 PMCID: PMC8433496 DOI: 10.1073/pnas.2025061118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
A prevailing view is that Weber's law constitutes a fundamental principle of perception. This widely accepted psychophysical law states that the minimal change in a given stimulus that can be perceived increases proportionally with amplitude and has been observed across systems and species in hundreds of studies. Importantly, however, Weber's law is actually an oversimplification. Notably, there exist violations of Weber's law that have been consistently observed across sensory modalities. Specifically, perceptual performance is better than that predicted from Weber's law for the higher stimulus amplitudes commonly found in natural sensory stimuli. To date, the neural mechanisms mediating such violations of Weber's law in the form of improved perceptual performance remain unknown. Here, we recorded from vestibular thalamocortical neurons in rhesus monkeys during self-motion stimulation. Strikingly, we found that neural discrimination thresholds initially increased but saturated for higher stimulus amplitudes, thereby causing the improved neural discrimination performance required to explain perception. Theory predicts that stimulus-dependent neural variability and/or response nonlinearities will determine discrimination threshold values. Using computational methods, we thus investigated the mechanisms mediating this improved performance. We found that the structure of neural variability, which initially increased but saturated for higher amplitudes, caused improved discrimination performance rather than response nonlinearities. Taken together, our results reveal the neural basis for violations of Weber's law and further provide insight as to how variability contributes to the adaptive encoding of natural stimuli with continually varying statistics.
Collapse
Affiliation(s)
- Jerome Carriot
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada;
| |
Collapse
|
7
|
Abstract
Human decisions are based on finite information, which makes them inherently imprecise. But what determines the degree of such imprecision? Here, we develop an efficient coding framework for higher-level cognitive processes in which information is represented by a finite number of discrete samples. We characterize the sampling process that maximizes perceptual accuracy or fitness under the often-adopted assumption that full adaptation to an environmental distribution is possible, and show how the optimal process differs when detailed information about the current contextual distribution is costly. We tested this theory on a numerosity discrimination task, and found that humans efficiently adapt to contextual distributions, but in the way predicted by the model in which people must economize on environmental information. Thus, understanding decision behavior requires that we account for biological restrictions on information coding, challenging the often-adopted assumption of precise prior knowledge in higher-level decision systems.
Collapse
Affiliation(s)
- Joseph A Heng
- Department of Health Sciences and Technology, Federal Institute of Technology (ETH)ZurichSwitzerland
| | - Michael Woodford
- Department of Economics, Columbia UniversityNew YorkUnited States
| | - Rafael Polania
- Department of Health Sciences and Technology, Federal Institute of Technology (ETH)ZurichSwitzerland
| |
Collapse
|
8
|
Keshmiri S. Entropy and the Brain: An Overview. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E917. [PMID: 33286686 PMCID: PMC7597158 DOI: 10.3390/e22090917] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/25/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Entropy is a powerful tool for quantification of the brain function and its information processing capacity. This is evident in its broad domain of applications that range from functional interactivity between the brain regions to quantification of the state of consciousness. A number of previous reviews summarized the use of entropic measures in neuroscience. However, these studies either focused on the overall use of nonlinear analytical methodologies for quantification of the brain activity or their contents pertained to a particular area of neuroscientific research. The present study aims at complementing these previous reviews in two ways. First, by covering the literature that specifically makes use of entropy for studying the brain function. Second, by highlighting the three fields of research in which the use of entropy has yielded highly promising results: the (altered) state of consciousness, the ageing brain, and the quantification of the brain networks' information processing. In so doing, the present overview identifies that the use of entropic measures for the study of consciousness and its (altered) states led the field to substantially advance the previous findings. Moreover, it realizes that the use of these measures for the study of the ageing brain resulted in significant insights on various ways that the process of ageing may affect the dynamics and information processing capacity of the brain. It further reveals that their utilization for analysis of the brain regional interactivity formed a bridge between the previous two research areas, thereby providing further evidence in support of their results. It concludes by highlighting some potential considerations that may help future research to refine the use of entropic measures for the study of brain complexity and its function. The present study helps realize that (despite their seemingly differing lines of inquiry) the study of consciousness, the ageing brain, and the brain networks' information processing are highly interrelated. Specifically, it identifies that the complexity, as quantified by entropy, is a fundamental property of conscious experience, which also plays a vital role in the brain's capacity for adaptation and therefore whose loss by ageing constitutes a basis for diseases and disorders. Interestingly, these two perspectives neatly come together through the association of entropy and the brain capacity for information processing.
Collapse
Affiliation(s)
- Soheil Keshmiri
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0237, Japan
| |
Collapse
|
9
|
Keshmiri S. Comparative Analysis of the Permutation and Multiscale Entropies for Quantification of the Brain Signal Variability in Naturalistic Scenarios. Brain Sci 2020; 10:E527. [PMID: 32781789 PMCID: PMC7463830 DOI: 10.3390/brainsci10080527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
As alternative entropy estimators, multiscale entropy (MSE) and permutation entropy (PE) are utilized for quantification of the brain function and its signal variability. In this context, their applications are primarily focused on two specific domains: (1) the effect of brain pathology on its function (2) the study of altered states of consciousness. As a result, there is a paucity of research on applicability of these measures in more naturalistic scenarios. In addition, the utility of these measures for quantification of the brain function and with respect to its signal entropy is not well studied. These shortcomings limit the interpretability of the measures when used for quantification of the brain signal entropy. The present study addresses these limitations by comparing MSE and PE with entropy of human subjects' EEG recordings, who watched short movie clips with negative, neutral, and positive content. The contribution of the present study is threefold. First, it identifies a significant anti-correlation between MSE and entropy. In this regard, it also verifies that such an anti-correlation is stronger in the case of negative rather than positive or neutral affects. Second, it finds that MSE significantly differentiates between these three affective states. Third, it observes that the use of PE does not warrant such significant differences. These results highlight the level of association between brain's entropy in response to affective stimuli on the one hand and its quantification in terms of MSE and PE on the other hand. This, in turn, allows for more informed conclusions on the utility of MSE and PE for the study and analysis of the brain signal variability in naturalistic scenarios.
Collapse
Affiliation(s)
- Soheil Keshmiri
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), 2-2 Hikaridai Seika-cho, Kyoto 619-02, Japan
| |
Collapse
|
10
|
Marquez MM, Chacron MJ. Serotonergic Modulation of Sensory Neuron Activity and Behavior in Apteronotus albifrons. Front Integr Neurosci 2020; 14:38. [PMID: 32733214 PMCID: PMC7358949 DOI: 10.3389/fnint.2020.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/15/2020] [Indexed: 01/12/2023] Open
Abstract
Organisms must constantly adapt to changes in their environment to survive. It is thought that neuromodulators such as serotonin enable sensory neurons to better process input encountered during different behavioral contexts. Here, we investigated how serotonergic innervation affects neural and behavioral responses to behaviorally relevant envelope stimuli in the weakly electric fish species Apteronotus albifrons. Under baseline conditions, we found that exogenous serotonin application within the electrosensory lateral line lobe increased sensory neuron excitability, thereby promoting burst firing. We found that serotonin enhanced the responses to envelope stimuli of pyramidal cells within the lateral segment of the electrosensory lateral line lobe (ELL) by increasing sensitivity, with the increase more pronounced for stimuli with higher temporal frequencies (i.e., >0.2 Hz). Such increases in neural sensitivity were due to increased burst firing. At the organismal level, bilateral serotonin application within the ELL lateral segment enhanced behavioral responses to sensory input through increases in sensitivity. Similar to what was observed for neural responses, increases in behavioral sensitivity were more pronounced for higher (i.e., >0.2 Hz) temporal frequencies. Surprisingly, a comparison between our results and previous ones obtained in the closely related species A. leptorhynchus revealed that, while serotonin application gave rise to similar effects on neural excitability and responses to sensory input, serotonin application also gave rise to marked differences in behavior. Specifically, behavioral responses in A. leptorhynchus were increased primarily for lower (i.e., ≤0.2 Hz) rather than for higher temporal frequencies. Thus, our results strongly suggest that there are marked differences in how sensory neural responses are processed downstream to give rise to behavior across both species. This is even though previous results have shown that the behavioral responses of both species to envelope stimuli were identical when serotonin is not applied.
Collapse
Affiliation(s)
- Mariana M Marquez
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| | - Maurice J Chacron
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Marquez MM, Chacron MJ. Serotonin modulates optimized coding of natural stimuli through increased neural and behavioural responses via enhanced burst firing. J Physiol 2020; 598:1573-1589. [DOI: 10.1113/jp278940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/23/2020] [Indexed: 01/28/2023] Open
|
12
|
Entropy of the Multi-Channel EEG Recordings Identifies the Distributed Signatures of Negative, Neutral and Positive Affect in Whole-Brain Variability. ENTROPY 2019. [PMCID: PMC7514573 DOI: 10.3390/e21121228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Individuals’ ability to express their subjective experiences in terms of such attributes as pleasant/unpleasant or positive/negative feelings forms a fundamental property of their affect and emotion. However, neuroscientific findings on the underlying neural substrates of the affect appear to be inconclusive with some reporting the presence of distinct and independent brain systems and others identifying flexible and distributed brain regions. A common theme among these studies is the focus on the change in brain activation. As a result, they do not take into account the findings that indicate the brain activation and its information content does not necessarily modulate and that the stimuli with equivalent sensory and behavioural processing demands may not necessarily result in differential brain activation. In this article, we take a different stance on the analysis of the differential effect of the negative, neutral and positive affect on the brain functioning in which we look into the whole-brain variability: that is the change in the brain information processing measured in multiple distributed regions. For this purpose, we compute the entropy of individuals’ muti-channel EEG recordings who watched movie clips with differing affect. Our results suggest that the whole-brain variability significantly differentiates between the negative, neutral and positive affect. They also indicate that although some brain regions contribute more to such differences, it is the whole-brain variational pattern that results in their significantly above chance level prediction. These results imply that although the underlying brain substrates for negative, neutral and positive affect exhibit quantitatively differing degrees of variability, their differences are rather subtly encoded in the whole-brain variational patterns that are distributed across its entire activity.
Collapse
|
13
|
Huang CG, Metzen MG, Chacron MJ. Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish. SCIENCE ADVANCES 2019; 5:eaax2211. [PMID: 31693006 PMCID: PMC6821470 DOI: 10.1126/sciadv.aax2211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Biological systems must be flexible to environmental changes to survive. This is exemplified by the fact that sensory systems continuously adapt to changes in the environment to optimize coding and behavioral responses. However, the nature of the underlying mechanisms remains poorly understood in general. Here, we investigated the mechanisms mediating adaptive optimized coding of naturalistic stimuli with varying statistics depending on the animal's velocity during movement. We found that central neurons adapted their responses to stimuli with different power spectral densities such as to optimally encode them, thereby ensuring that behavioral responses are, in turn, better matched to the new stimulus statistics. Sensory adaptation further required descending inputs from the forebrain as well as the raphe nuclei. Our findings thus reveal a previously unknown functional role for descending pathways in mediating adaptive optimized coding of natural stimuli that is likely generally applicable across sensory systems and species.
Collapse
|
14
|
Abstract
Adaptation is a common principle that recurs throughout the nervous system at all stages of processing. This principle manifests in a variety of phenomena, from spike frequency adaptation, to apparent changes in receptive fields with changes in stimulus statistics, to enhanced responses to unexpected stimuli. The ubiquity of adaptation leads naturally to the question: What purpose do these different types of adaptation serve? A diverse set of theories, often highly overlapping, has been proposed to explain the functional role of adaptive phenomena. In this review, we discuss several of these theoretical frameworks, highlighting relationships among them and clarifying distinctions. We summarize observations of the varied manifestations of adaptation, particularly as they relate to these theoretical frameworks, focusing throughout on the visual system and making connections to other sensory systems.
Collapse
Affiliation(s)
- Alison I Weber
- Department of Physiology and Biophysics and Computational Neuroscience Center, University of Washington, Seattle, Washington 98195, USA; ,
| | - Kamesh Krishnamurthy
- Neuroscience Institute and Center for Physics of Biological Function, Department of Physics, Princeton University, Princeton, New Jersey 08544, USA;
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics and Computational Neuroscience Center, University of Washington, Seattle, Washington 98195, USA; , .,UW Institute for Neuroengineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
15
|
Serotonin Selectively Increases Detectability of Motion Stimuli in the Electrosensory System. eNeuro 2018; 5:eN-NWR-0013-18. [PMID: 29845105 PMCID: PMC5969320 DOI: 10.1523/eneuro.0013-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022] Open
Abstract
Serotonergic innervation of sensory areas is found ubiquitously across the central nervous system of vertebrates. Here, we used a system's level approach to investigate the role of serotonin on processing motion stimuli in the electrosensory system of the weakly electric fish Apteronotus albifrons. We found that exogenous serotonin application increased the firing activity of pyramidal neural responses to both looming and receding motion. Separating spikes belonging to bursts from those that were isolated revealed that this effect was primarily due to increased burst firing. Moreover, when investigating whether firing activity during stimulation could be discriminated from baseline (i.e., in the absence of stimulation), we found that serotonin increased stimulus discriminability only for some stimuli. This is because increased burst firing was most prominent for these. Further, the effects of serotonin were highly heterogeneous, with some neurons displaying large while others instead displaying minimal changes in responsiveness following serotonin application. Further analysis revealed that serotonin application had the greatest effect on neurons with low baseline firing rates and little to no effect on neurons with high baseline firing rates. Finally, the effects of serotonin on sensory neuron responses were largely independent of object velocity. Our results therefore reveal a novel function for the serotonergic system in selectively enhancing discriminability for motion stimuli.
Collapse
|
16
|
On texture, form, and fixational eye movements. Curr Opin Neurobiol 2017; 46:228-233. [PMID: 28961499 DOI: 10.1016/j.conb.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 11/21/2022]
Abstract
Recent studies show that small movements of the eye that occur during fixation are controlled in the brain by similar neural mechanisms as large eye movements. Information theory has been successful in explaining many properties of large eye movements. Could it also help us understand the smaller eye movements that are much more difficult to study experimentally? Here I describe new predictions for how small amplitude fixational eye movements should be modulated by visual context in order to improve visual perception. In particular, the amplitude of fixational eye movements is predicted to differ when localizing edges defined by changes in texture or luminance.
Collapse
|
17
|
Huang CG, Chacron MJ. SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review. Channels (Austin) 2017; 11:281-304. [PMID: 28277938 DOI: 10.1080/19336950.2017.1299835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ion channels play essential roles toward determining how neurons respond to sensory input to mediate perception and behavior. Small conductance calcium-activated potassium (SK) channels are found ubiquitously throughout the brain and have been extensively characterized both molecularly and physiologically in terms of structure and function. It is clear that SK channels are key determinants of neural excitability as they mediate important neuronal response properties such as spike frequency adaptation. However, the functional roles of the different known SK channel subtypes are not well understood. Here we review recent evidence from the electrosensory system of weakly electric fish suggesting that the function of different SK channel subtypes is to optimize the processing of independent but behaviorally relevant stimulus attributes. Indeed, natural sensory stimuli frequently consist of a fast time-varying waveform (i.e., the carrier) whose amplitude (i.e., the envelope) varies slowly and independently. We first review evidence showing how somatic SK2 channels mediate tuning and responses to carrier waveforms. We then review evidence showing how dendritic SK1 channels instead determine tuning and optimize responses to envelope waveforms based on their statistics as found in the organism's natural environment in an independent fashion. The high degree of functional homology between SK channels in electric fish and their mammalian orthologs, as well as the many important parallels between the electrosensory system and the mammalian visual, auditory, and vestibular systems, suggest that these functional roles are conserved across systems and species.
Collapse
Affiliation(s)
- Chengjie G Huang
- a Department of Physiology , McGill University , Montreal , QC , Canada
| | - Maurice J Chacron
- a Department of Physiology , McGill University , Montreal , QC , Canada
| |
Collapse
|
18
|
Maren AJ. The Cluster Variation Method: A Primer for Neuroscientists. Brain Sci 2016; 6:E44. [PMID: 27706022 PMCID: PMC5187558 DOI: 10.3390/brainsci6040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/24/2022] Open
Abstract
Effective Brain-Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables, is defined in terms of a single interaction enthalpy parameter (h) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found.
Collapse
Affiliation(s)
- Alianna J Maren
- Northwestern University School of Professional Studies, Master of Science in Predictive Analytics Program, 405 Church St, Evanston, IL 60201, USA.
| |
Collapse
|
19
|
Abstract
Advances in experimental techniques, including behavioral paradigms using rich stimuli under closed loop conditions and the interfacing of neural systems with external inputs and outputs, reveal complex dynamics in the neural code and require a revisiting of standard concepts of representation. High-throughput recording and imaging methods along with the ability to observe and control neuronal subpopulations allow increasingly detailed access to the neural circuitry that subserves neural representations and the computations they support. How do we harness theory to build biologically grounded models of complex neural function?
Collapse
Affiliation(s)
- Adrienne Fairhall
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St., HSB G424, Box 357290, Seattle, WA 98195-7290, USA.
| |
Collapse
|
20
|
|