1
|
DeLeo DM, Bracken-Grissom HD. Bioluminescence and environmental light drive the visual evolution of deep-sea shrimp (Oplophoroidea). Commun Biol 2025; 8:213. [PMID: 39934388 PMCID: PMC11814407 DOI: 10.1038/s42003-025-07450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Light functions as the universal language in the deep sea (>200 m). Both bioluminescent emissions and downwelling light sources dimly illuminate the water column and can drive sensory system evolution. In pelagic environments, vertically migrating animals can experience drastic changes to their lighting environment across depth, subjecting them to unique selective pressures, possibly to distinguish between changes in ambient light and bioluminescent sources. Here we show that visual opsin diversity across a group of variable vertical migrators -bioluminescent deep-sea shrimp belonging to the Superfamily Oplophoroidea- is higher among species who migrate to shallower waters with more variable light conditions. Further, we provide evidence for adaptive visual evolution among species who have evolved an additional mode of bioluminescence (photophores), including positive selection for a putative mid-wavelength sensitive opsin that may facilitate light source discrimination. Diversification of this opsin appears to play an important role in the visual ecologies of photophore-bearing shrimp with its diversification in Oplophoroidea likely playing a critical role in the fitness and evolutionary success of this group.
Collapse
Affiliation(s)
- Danielle M DeLeo
- Institute of Environment, Department of Biological Sciences, Florida International University, 3000 NE 151st St, North Miami, FL, 33181, USA.
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA.
| | - Heather D Bracken-Grissom
- Institute of Environment, Department of Biological Sciences, Florida International University, 3000 NE 151st St, North Miami, FL, 33181, USA
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| |
Collapse
|
2
|
Liu ESF, Cudia MKET, Wong GKY, Ko CN, Lam DSC. The concept of cone opponency may extend beyond accommodation, to myopiagenesis and emmetropization, for a better peripheral defocus lens. Asia Pac J Ophthalmol (Phila) 2024; 13:100125. [PMID: 39662699 DOI: 10.1016/j.apjo.2024.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Myopia has ever-rising prevalence in the past few decades globally. Its pathogenesis is still not adequately elucidated especially at the signal transduction level. For the environmental risk factors, there is a large body of fragmented knowledge about the visual inputs for accommodation, myopiagenesis and emmetropization, with the latter two being essentially local processes. The red-green and yellow-blue chromatic pathways, together with the underlying L-M and S-(L+M) cone opponency, seem to be the common denominator amongst them. In this review, experimental and observational evidence are summarized to delineate the interplay of them. This review may establish the pivotal role of longitudinal chromatic aberration (LCA) for a mechanistic approach to future research in myopia control. This review looks into the mechanistic processes underlying myopiagenesis and emmetropization, specifically focusing on chromatic aberration and cone opponency in vision as pivotal components. The roles of longitudinal chromatic aberration (LCA) and cone contrast in myopia onset and development are intriguing. How visual input and chromatic pathways (specifically, red-green and blue-yellow cone opponency) contribute to accommodation that may trigger emmetropization mechanisms, thereby influencing eye growth patterns are explored and discussed. In brief, this manuscript delves into the physiology of visual processing and highlights a foundational aspect of visual science that may account for a "Go" or "Stop" signaling in axial eye growth. It further proposes a metric to gauge myopia-inhibiting optical devices such as the peripheral defocus lenses, for its best iteration. Future research in the above-mentioned areas is warranted.
Collapse
Affiliation(s)
- Edward S F Liu
- The Primasia International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
| | | | - Graham K Y Wong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chung-Nga Ko
- The Primasia International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Dennis S C Lam
- The Primasia International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
| |
Collapse
|
3
|
Overs E, Stump S, Severino I, Blumstein DT. A test of the species confidence hypothesis in dusky damselfish. Curr Zool 2024; 70:79-86. [PMID: 38476140 PMCID: PMC10926255 DOI: 10.1093/cz/zoac099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 03/14/2024] Open
Abstract
Visual cues are important in both interspecific and intraspecific communication. The species confidence hypothesis proposes that animals are more attracted to conspecific colors and repelled by colors, not on their bodies. Studies on terrestrial lizards and birds have tested the species confidence hypothesis and shown that conspecific colors elicit reduced antipredator behavior. To date, the species confidence hypothesis has not been tested in the marine environment, specifically on coral reefs where color communication is of vital importance. We addressed this knowledge gap by measuring flight initiation distance (the distance an individual moves away from an approaching threat) in dusky damselfish (Stegastes nigricans) in response to an approaching disc of 1 of 4 different color treatments: conspecific, blue, yellow, and black. If the species confidence hypothesis explained variation in damselfish flight initiation distance, then we expected individuals to tolerate closer approaches when approached by a conspecific color. In addition, we calculated the color difference between each stimulus and its corresponding background as a potential alternative explanation for flight responses. Damselfish tolerated the closest approach from the conspecific color stimulus; there were no significant differences between other colors and there was no support for the alternative color difference hypothesis. As with similar terrestrial studies, these results are relevant to ecotourists' choice of swimsuit and wetsuit colors because color choice may modify natural antipredator behavior.
Collapse
Affiliation(s)
- Elle Overs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | - Sydney Stump
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | - Isabel Severino
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
4
|
Yilmaz A, Hempel de Ibarra N, Kelber A. High diversity of arthropod colour vision: from genes to ecology. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210273. [PMID: 36058249 PMCID: PMC9441235 DOI: 10.1098/rstb.2021.0273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Colour vision allows animals to use the information contained in the spectrum of light to control important behavioural decisions such as selection of habitats, food or mates. Among arthropods, the largest animal phylum, we find completely colour-blind species as well as species with up to 40 different opsin genes or more than 10 spectral types of photoreceptors, we find a large diversity of optical methods shaping spectral sensitivity, we find eyes with different colour vision systems looking into the dorsal and ventral hemisphere, and species in which males and females see the world in different colours. The behavioural use of colour vision shows an equally astonishing diversity. Only the neural mechanisms underlying this sensory ability seems surprisingly conserved-not only within the phylum, but even between arthropods and the other well-studied phylum, chordates. The papers in this special issue allow a glimpse into the colourful world of arthropod colour vision, and besides giving an overview this introduction highlights how much more research is needed to fill in the many missing pieces of this large puzzle. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology - Functional Zoology, Lund University, Lund 22362, Sweden
| | | | - Almut Kelber
- Department of Biology - Functional Zoology, Lund University, Lund 22362, Sweden
| |
Collapse
|
5
|
Abstract
Ants are ecologically one of the most important groups of insects and exhibit impressive capabilities for visual learning and orientation. Studies on numerous ant species demonstrate that ants can learn to discriminate between different colours irrespective of light intensity and modify their behaviour accordingly. However, the findings across species are variable and inconsistent, suggesting that our understanding of colour vision in ants and what roles ecological and phylogenetic factors play is at an early stage. This review provides a brief synopsis of the critical findings of the past century of research by compiling studies that address molecular, physiological and behavioural aspects of ant colour vision. With this, we aim to improve our understanding of colour vision and to gain deeper insights into the mysterious and colourful world of ants. This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology, Lund Vision Group, University of Lund, 223 62 Lund, Sweden
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| |
Collapse
|
6
|
Tosetto L, Williamson JE, White TE, Hart NS. Can the Dynamic Colouration and Patterning of Bluelined Goatfish (Mullidae; Upeneichthys lineatus) Be Perceived by Conspecifics? BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:103-123. [PMID: 34856558 DOI: 10.1159/000519894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Bluelined goatfish (Upeneichthys lineatus) exhibit dynamic body colour changes and transform rapidly from a pale, buff/white, horizontally banded pattern to a conspicuous, vertically striped, red pattern when foraging. This red pattern is potentially an important foraging signal for communication with conspecifics, provided that U. lineatus can detect and discriminate the pattern. Using both physiological and behavioural experiments, we first examined whether U. lineatus possess visual pigments with sensitivity to long ("red") wavelengths of light, and whether they can discriminate the colour red. Microspectrophotometric measurements of retinal photoreceptors showed that while U. lineatuslack visual pigments dedicated to the red part of the spectrum, their pigments likely confer some sensitivity in this spectral band. Behavioural colour discrimination experiments suggested that U. lineatuscan distinguish a red reward stimulus from a grey distractor stimulus of variable brightness. Furthermore, when presented with red stimuli of varying brightness they could mostly discriminate the darker and lighter reds from the grey distractor. We also obtained anatomical estimates of visual acuity, which suggest that U. lineatus can resolve the contrasting bands of conspecifics approximately 7 m away in clear waters. Finally, we measured the spectral reflectance of the red and white colouration on the goatfish body. Visual models suggest that U. lineatus can discriminate both chromatic and achromatic differences in body colouration where longer wavelength light is available. This study demonstrates that U. lineatus have the capacity for colour vision and can likely discriminate colours in the long-wavelength region of the spectrum where the red body pattern reflects light strongly. The ability to see red may therefore provide an advantage in recognising visual signals from conspecifics. This research furthers our understanding of how visual signals have co-evolved with visual abilities, and the role of visual communication in the marine environment.
Collapse
Affiliation(s)
- Louise Tosetto
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Thomas E White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Hanley D, Rutledge SL, Villa J. The Perceptual and Cognitive Processes That Govern Egg Rejection in Hosts of Avian Brood Parasites. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.702934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hosts of avian brood parasites are under intense selective pressure to prevent or reduce the cost of parasitism. Many have evolved refined egg discrimination abilities, which can select for eggshell mimicry in their parasite. A classic assumption underlying these coevolutionary dynamics is that host egg recognition depends on the perceivable difference between their own eggs and those of their parasite. Over the past two decades, the receptor noise-limited (RNL) model has contributed to our understanding of these coevolutionary interactions by providing researchers a method to predict a host’s ability to discriminate a parasite’s egg from its own. Recent research has shown that some hosts are more likely to reject brown eggs than blue eggs, regardless of the perceived differences to their own. Such responses suggest that host egg recognition may be due to perceptual or cognitive processes not currently predictable by the RNL model. In this perspective, we discuss the potential value of using the RNL model as a null model to explore alternative perceptual processes and higher-order cognitive processes that could explain how and why some hosts make seemingly counter-intuitive decisions. Further, we outline experiments that should be fruitful for determining the perceptual and cognitive processing used by hosts for egg recognition tasks.
Collapse
|
8
|
Valvo JJ, Aponte JD, Daniel MJ, Dwinell K, Rodd H, Houle D, Hughes KA. Using Delaunay triangulation to sample whole-specimen color from digital images. Ecol Evol 2021; 11:12468-12484. [PMID: 34594513 PMCID: PMC8462138 DOI: 10.1002/ece3.7992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
Color variation is one of the most obvious examples of variation in nature, but biologically meaningful quantification and interpretation of variation in color and complex patterns are challenging. Many current methods for assessing variation in color patterns classify color patterns using categorical measures and provide aggregate measures that ignore spatial pattern, or both, losing potentially important aspects of color pattern.Here, we present Colormesh, a novel method for analyzing complex color patterns that offers unique capabilities. Our approach is based on unsupervised color quantification combined with geometric morphometrics to identify regions of putative spatial homology across samples, from histology sections to whole organisms. Colormesh quantifies color at individual sampling points across the whole sample.We demonstrate the utility of Colormesh using digital images of Trinidadian guppies (Poecilia reticulata), for which the evolution of color has been frequently studied. Guppies have repeatedly evolved in response to ecological differences between up- and downstream locations in Trinidadian rivers, resulting in extensive parallel evolution of many phenotypes. Previous studies have, for example, compared the area and quantity of discrete color (e.g., area of orange, number of black spots) between these up- and downstream locations neglecting spatial placement of these areas. Using the Colormesh pipeline, we show that patterns of whole-animal color variation do not match expectations suggested by previous work.Colormesh can be deployed to address a much wider range of questions about color pattern variation than previous approaches. Colormesh is thus especially suited for analyses that seek to identify the biologically important aspects of color pattern when there are multiple competing hypotheses or even no a priori hypotheses at all.
Collapse
Affiliation(s)
- Jennifer J. Valvo
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Jose David Aponte
- Department of Cell Biology and AnatomyUniversity of CalgaryCalgaryABCanada
| | - Mitch J. Daniel
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kenna Dwinell
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Helen Rodd
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - David Houle
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kimberly A. Hughes
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
9
|
Evidence for UV-green dichromacy in the basal hymenopteran Sirex noctilio (Siricidae). Sci Rep 2021; 11:15601. [PMID: 34341410 PMCID: PMC8329207 DOI: 10.1038/s41598-021-95107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
A precondition for colour vision is the presence of at least two spectral types of photoreceptors in the eye. The order Hymenoptera is traditionally divided into the Apocrita (ants, bees, wasps) and the Symphyta (sawflies, woodwasps, horntails). Most apocritan species possess three different photoreceptor types. In contrast, physiological studies in the Symphyta have reported one to four photoreceptor types. To better understand the evolution of photoreceptor diversity in the Hymenoptera, we studied the Symphyta Sirex noctilio, which belongs to the superfamily Siricoidea, a closely related group of the Apocrita suborder. Our aim was to (i) identify the photoreceptor types of the compound eye by electroretinography (ERG), (ii) characterise the visual opsin genes of S. noctilio by genomic comparisons and phylogenetic analyses and (iii) analyse opsin mRNA expression. ERG measurements revealed two photoreceptor types in the compound eye, maximally sensitive to 527 and 364 nm. In addition, we identified three opsins in the genome, homologous to the hymenopteran green or long-wavelength sensitive (LW) LW1, LW2 and ultra-violet sensitive (UV) opsin genes. The LW1 and UV opsins were found to be expressed in the compound eyes, and LW2 and UV opsins in the ocelli. The lack of a blue or short-wavelength sensitive (SW) homologous opsin gene and a corresponding receptor suggests that S. noctilio is a UV-green dichromate.
Collapse
|
10
|
Risau-Gusman S. Color discrimination properties arising from optimal decoding in the early stages of visual systems. J Theor Biol 2021; 526:110773. [PMID: 34033813 DOI: 10.1016/j.jtbi.2021.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
In order to interpret animal behavior we need to understand how they see the world. As directly testing color discrimination in animals is difficult and time consuming, it is important to develop theoretical models based in the properties of visual systems. One of the most successful for the prediction of color discrimination behavior is the receptor noise-limited (RNL) model, which depends only on the level of noise in photoreceptors and opponent mechanisms. Here a complementary approach to model construction is used, and optimal color discrimination properties are obtained using information theoretical tools, for the early stages of visual systems. It is shown here that, for most biologically relevant conditions the optimal discrimination function of an ideal observer coincides with the one obtained with the RNL model. Furthermore, within this framework the influence of opponency can be studied by considering models with and without that mechanism but with exactly the same parameters at the level of photoreceptors. As an example, it is shown here that opponency is necessary to explain the discrimination of monochromatic stimuli in honeybees, but not in budgerigars. Since this is a consequence of the narrowing of absorption spectra of photoreceptors, produced by the presence of oil droplets, this could also be true for most other species of birds. This suggests that in order to study opponency in birds, stimuli should have a relatively wide spectrum.
Collapse
Affiliation(s)
- Sebastián Risau-Gusman
- Consejo Nacional de Investigaciones Científicas y Técnicas and Department of Medical Physics, Centro Atómico Bariloche, San Carlos de Bariloche, 8400 Río Negro, Argentina.
| |
Collapse
|
11
|
Haze of glue determines preference of western flower thrips (Frankliniella occidentalis) for yellow or blue traps. Sci Rep 2021; 11:6557. [PMID: 33753841 PMCID: PMC7985194 DOI: 10.1038/s41598-021-86105-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/04/2021] [Indexed: 11/08/2022] Open
Abstract
In a wind tunnel we compared the colour preference for western flower thrips to four types of colour plates (clear, white, blue and yellow) applied with two types of glue (diffuse Stikem versus clear D41). Further the results for blue and yellow preference were validated in two greenhouses. In the wind tunnel, we found a clear preference of yellow over blue when a clear glue (D41) was used. However, with a more diffuse (whitish) glue (Stikem) the preference for yellow over blue disappeared, whereby the attraction to yellow decreased (58%) while the attraction to blue increased (65%). In the greenhouses, we found similar effects as in the wind tunnel with a decrease in attraction to yellow (35%) and increase in attraction to blue (32%) for Stikem compared to D41. Light measurements showed an increase of 18% of blue, 21% of violet light, 8% of yellow and 9% of green light reflected on the yellow Stikem trap versus the yellow D41 trap. On blue plates there was only 4% increase of blue light, 8% decrease of yellow light reflected when Stikem glue was used compared to D41 glue. It is not yet clear if the change of light reflection ratio blue/yellow caused by the glue type plays a role in the change of attraction. The reflective properties of glue are so far an unknown factor in colour choice and may explain partially the different results on colour preference. A small review on thrips colour preference is discussed to determine possible other factors of influence on colour choice.
Collapse
|
12
|
Sondhi Y, Ellis EA, Bybee SM, Theobald JC, Kawahara AY. Light environment drives evolution of color vision genes in butterflies and moths. Commun Biol 2021; 4:177. [PMID: 33564115 PMCID: PMC7873203 DOI: 10.1038/s42003-021-01688-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Opsins, combined with a chromophore, are the primary light-sensing molecules in animals and are crucial for color vision. Throughout animal evolution, duplications and losses of opsin proteins are common, but it is unclear what is driving these gains and losses. Light availability is implicated, and dim environments are often associated with low opsin diversity and loss. Correlations between high opsin diversity and bright environments, however, are tenuous. To test if increased light availability is associated with opsin diversification, we examined diel niche and identified opsins using transcriptomes and genomes of 175 butterflies and moths (Lepidoptera). We found 14 independent opsin duplications associated with bright environments. Estimating their rates of evolution revealed that opsins from diurnal taxa evolve faster-at least 13 amino acids were identified with higher dN/dS rates, with a subset close enough to the chromophore to tune the opsin. These results demonstrate that high light availability increases opsin diversity and evolution rate in Lepidoptera.
Collapse
Affiliation(s)
- Yash Sondhi
- Department of Biology, Florida International University, Miami, FL, USA.
| | - Emily A Ellis
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Seth M Bybee
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Jamie C Theobald
- Department of Biology, Florida International University, Miami, FL, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Elnaiem DE, Khogali A, Alsharif B, Dakein O, Jibreel T, Hassan M, Edries HH, Elhadi H, Elnur B, Osman OF, Boer MD, Alvar J, Khalid NM. Understanding sand fly sampling methods: sticky traps are attraction-based and not interceptive sampling tools of Phlebotomus orientalis. Parasit Vectors 2020; 13:389. [PMID: 32736588 PMCID: PMC7393830 DOI: 10.1186/s13071-020-04249-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Sticky traps are generally viewed as interceptive sand fly sampling methods; although no previous experimental evidence has supported this assumption. In this study, we tested this assumption experimentally for Phlebotomus orientalis, the principal vector of visceral leishmaniasis in East Africa, and propose an explanation for the highly male-biased collection of sticky traps. METHODS A number of field experiments were carried out in March-June 2016-2019, in Gedarif state, eastern Sudan. In the first experiment, we compared numbers of P. orientalis caught on sticky traps made of black, red, transparent, white, yellow, green and blue A4 size papers set simultaneously at different lunar light conditions. In the second and third experiments, we compared numbers of P. orientalis captured on sticky traps placed side-by-side horizontally or vertically on the ground, or horizontally on a 15 cm height stool. We also witnessed mating behaviour of sand flies following their landing on un-sticky papers placed on the ground. RESULTS Phlebotomus orientalis showed significant attraction to white, yellow and transparent traps, with negligible numbers caught on the black and the red traps. Similarly, significantly higher numbers of P. orientalis were attracted to the horizontal traps, resulting in an 8-fold increase in sand fly trapping efficacy as compared to the vertical traps. Placing the traps on the stools resulted in significant reduction in this attraction. In contrast to the sticky traps that captured only very few females; we found that when male sand flies land on un-sticky white paper they successfully lure females and copulate with them. CONCLUSIONS We demonstrate that, for P. orientalis, sticky traps are more attractant-based than interception-based sampling tools. Further, our findings support the notion that males of this sand fly species likely utilize the bright surface of the trap papers to perform mating rituals that attract the females for copulation. However, pre-mature death in the sticky oil hampers the completion of these rituals, and thus results in failure to attract the females. These findings inform our understanding of P. orientalis behaviour and have important implications for optimization of sticky trap design for vector surveillance purposes.
Collapse
Affiliation(s)
- Dia-Eldin Elnaiem
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA.
| | - Altayeb Khogali
- Blue Nile Health Institute for Communicable Diseases, Gezira University, Wad Medani, Sudan
| | - Bashir Alsharif
- Medical Entomology Department, Federal Ministry of Health, Khartoum, Sudan
| | - Osman Dakein
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan.,Kalar azar Research Centre, Faculty of Medicine and Health Sciences, University of Gedarif, Gedarif, Sudan
| | - Tayseer Jibreel
- Blue Nile Health Institute for Communicable Diseases, Gezira University, Wad Medani, Sudan
| | | | - Hassan H Edries
- Blue Nile Health Institute for Communicable Diseases, Gezira University, Wad Medani, Sudan
| | - Hanan Elhadi
- Kalar azar Research Centre, Faculty of Medicine and Health Sciences, University of Gedarif, Gedarif, Sudan
| | - Bakri Elnur
- Blue Nile Health Institute for Communicable Diseases, Gezira University, Wad Medani, Sudan
| | - Omran F Osman
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | | | - Jorge Alvar
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | | |
Collapse
|
14
|
Stoddard MC, Eyster HN, Hogan BG, Morris DH, Soucy ER, Inouye DW. Wild hummingbirds discriminate nonspectral colors. Proc Natl Acad Sci U S A 2020; 117:15112-15122. [PMID: 32541035 PMCID: PMC7334476 DOI: 10.1073/pnas.1919377117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many animals have the potential to discriminate nonspectral colors. For humans, purple is the clearest example of a nonspectral color. It is perceived when two color cone types in the retina (blue and red) with nonadjacent spectral sensitivity curves are predominantly stimulated. Purple is considered nonspectral because no monochromatic light (such as from a rainbow) can evoke this simultaneous stimulation. Except in primates and bees, few behavioral experiments have directly examined nonspectral color discrimination, and little is known about nonspectral color perception in animals with more than three types of color photoreceptors. Birds have four color cone types (compared to three in humans) and might perceive additional nonspectral colors such as UV+red and UV+green. Can birds discriminate nonspectral colors, and are these colors behaviorally and ecologically relevant? Here, using comprehensive behavioral experiments, we show that wild hummingbirds can discriminate a variety of nonspectral colors. We also show that hummingbirds, relative to humans, likely perceive a greater proportion of natural colors as nonspectral. Our analysis of plumage and plant spectra reveals many colors that would be perceived as nonspectral by birds but not by humans: Birds' extra cone type allows them not just to see UV light but also to discriminate additional nonspectral colors. Our results support the idea that birds can distinguish colors throughout tetrachromatic color space and indicate that nonspectral color perception is vital for signaling and foraging. Since tetrachromacy appears to have evolved early in vertebrates, this capacity for rich nonspectral color perception is likely widespread.
Collapse
Affiliation(s)
- Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544;
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
| | - Harold N Eyster
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Benedict G Hogan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
| | - Dylan H Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Edward R Soucy
- Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - David W Inouye
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
- Department of Biology, University of Maryland, College Park, MD 20742
| |
Collapse
|
15
|
Yonekura T, Yamauchi J, Morimoto T, Seki Y. Spectral response properties of higher visual neurons in Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:217-232. [DOI: 10.1007/s00359-019-01391-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/29/2022]
|
16
|
|
17
|
Parnell AJ, Bradford JE, Curran EV, Washington AL, Adams G, Brien MN, Burg SL, Morochz C, Fairclough JPA, Vukusic P, Martin SJ, Doak S, Nadeau NJ. Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic Heliconius butterflies. J R Soc Interface 2019; 15:rsif.2017.0948. [PMID: 29669892 PMCID: PMC5938584 DOI: 10.1098/rsif.2017.0948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics.
Collapse
Affiliation(s)
- Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - James E Bradford
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Emma V Curran
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Adam L Washington
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK.,Department of Mechanical Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Gracie Adams
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Melanie N Brien
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Stephanie L Burg
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | | | | | - Pete Vukusic
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Simon J Martin
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Scott Doak
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| |
Collapse
|
18
|
Kane SA, Wang Y, Fang R, Lu Y, Dakin R. How conspicuous are peacock eyespots and other colorful feathers in the eyes of mammalian predators? PLoS One 2019; 14:e0210924. [PMID: 31017903 PMCID: PMC6481771 DOI: 10.1371/journal.pone.0210924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Colorful feathers have long been assumed to be conspicuous to predators, and hence likely to incur costs due to enhanced predation risk. However, many mammals that prey on birds have dichromatic visual systems with only two types of color-sensitive visual receptors, rather than the three and four photoreceptors characteristic of humans and most birds, respectively. Here, we use a combination of multispectral imaging, reflectance spectroscopy, color vision modelling and visual texture analysis to compare the visual signals available to conspecifics and to mammalian predators from multicolored feathers from the Indian peacock (Pavo cristatus), as well as red and yellow parrot feathers. We also model the effects of distance-dependent blurring due to visual acuity. When viewed by birds against green vegetation, most of the feathers studied are estimated to have color and brightness contrasts similar to values previously found for ripe fruit. On the other hand, for dichromat mammalian predators, visual contrasts for these feathers were only weakly detectable and often below detection thresholds for typical viewing distances. We also show that for dichromat mammal vision models, the peacock's train has below-detection threshold color and brightness contrasts and visual textures that match various foliage backgrounds. These findings are consistent with many feathers of similar hue to those studied here being inconspicuous, and in some cases potentially cryptic, in the eyes of common mammalian predators of adult birds. Given that birds perform many conspicuous motions and behaviors, this study suggests that mammalian predators are more likely to use other sensory modalities (e.g., motion detection, hearing, and olfaction), rather than color vision, to detect avian prey. This suggests new directions for future behavioral studies and emphasizes the importance of understanding the influence of the sensory ecology of predators in the evolution of animal coloration.
Collapse
Affiliation(s)
- Suzanne Amador Kane
- Physics & Astronomy Department, Haverford College, Haverford, Pennsylvania, United States of America
- * E-mail:
| | - Yuchao Wang
- Physics & Astronomy Department, Haverford College, Haverford, Pennsylvania, United States of America
| | - Rui Fang
- Physics & Astronomy Department, Haverford College, Haverford, Pennsylvania, United States of America
| | - Yabin Lu
- Physics & Astronomy Department, Haverford College, Haverford, Pennsylvania, United States of America
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, United States of America
| |
Collapse
|
19
|
Cheney KL, Green NF, Vibert AP, Vorobyev M, Marshall NJ, Osorio DC, Endler JA. An Ishihara-style test of animal colour vision. J Exp Biol 2019; 222:222/1/jeb189787. [DOI: 10.1242/jeb.189787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Colour vision mediates ecologically relevant tasks for many animals, such as mate choice, foraging and predator avoidance. However, our understanding of animal colour perception is largely derived from human psychophysics, and behavioural tests of non-human animals are required to understand how colour signals are perceived. Here, we introduce a novel test of colour vision in animals inspired by the Ishihara colour charts, which are widely used to identify human colour deficiencies. In our method, distractor dots have a fixed chromaticity (hue and saturation) but vary in luminance. Animals can be trained to find single target dots that differ from distractor dots in chromaticity. We provide MATLAB code for creating these stimuli, which can be modified for use with different animals. We demonstrate the success of this method with triggerfish, Rhinecanthus aculeatus, which quickly learnt to select target dots that differed from distractor dots, and highlight behavioural parameters that can be measured, including success of finding the target dot, time to detection and error rate. We calculated discrimination thresholds by testing whether target colours that were of increasing colour distances (ΔS) from distractor dots could be detected, and calculated discrimination thresholds in different directions of colour space. At least for some colours, thresholds indicated better discrimination than expected from the receptor noise limited (RNL) model assuming 5% Weber fraction for the long-wavelength cone. This methodology could be used with other animals to address questions such as luminance thresholds, sensory bias, effects of sensory noise, colour categorization and saliency.
Collapse
Affiliation(s)
- Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F. Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alexander P. Vibert
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Misha Vorobyev
- Department of Optometry and Vision Science, The University of Auckland, Auckland 1142, New Zealand
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel C. Osorio
- School of Life Sciences, The University of Sussex, Brighton BN1 9QG, UK
| | - John A. Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
20
|
Schnaitmann C, Haikala V, Abraham E, Oberhauser V, Thestrup T, Griesbeck O, Reiff DF. Color Processing in the Early Visual System of Drosophila. Cell 2018; 172:318-330.e18. [PMID: 29328919 DOI: 10.1016/j.cell.2017.12.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 10/03/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UVshort/blue and UVlong/green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently.
Collapse
Affiliation(s)
- Christopher Schnaitmann
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Väinö Haikala
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Eva Abraham
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Vitus Oberhauser
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thomas Thestrup
- Tools for Bio-Imaging, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Oliver Griesbeck
- Tools for Bio-Imaging, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Dierk F Reiff
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
21
|
Chen P, Matsushita A, Wakakuwa M, Arikawa K. Immunolocalization suggests a role of the histamine‐gated chloride channel PxHCLB in spectral opponent processing in butterfly photoreceptors. J Comp Neurol 2018; 527:753-766. [DOI: 10.1002/cne.24558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/31/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Pei‐Ju Chen
- Department of Evolutionary Studies of BiosystemsSOKENDAI (The Graduate University for Advanced Studies) Hayama Japan
| | - Atsuko Matsushita
- Department of Evolutionary Studies of BiosystemsSOKENDAI (The Graduate University for Advanced Studies) Hayama Japan
| | - Motohiro Wakakuwa
- Department of Evolutionary Studies of BiosystemsSOKENDAI (The Graduate University for Advanced Studies) Hayama Japan
| | - Kentaro Arikawa
- Department of Evolutionary Studies of BiosystemsSOKENDAI (The Graduate University for Advanced Studies) Hayama Japan
| |
Collapse
|
22
|
Gottwald M, Singh N, Haubrich AN, Regett S, von der Emde G. Electric-Color Sensing in Weakly Electric Fish Suggests Color Perception as a Sensory Concept beyond Vision. Curr Biol 2018; 28:3648-3653.e2. [PMID: 30416061 DOI: 10.1016/j.cub.2018.09.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 11/16/2022]
Abstract
Many sighted animals use color as a salient and reliable cue [1] to identify conspecifics [2-4], predators, or food [5-7]. Similarly, nocturnal, weakly electric fish Gnathonemus petersii might rely on "electric colors" [8] for unambiguous, critical object recognitions. These fish identify nearby targets by emitting electric signals and by sensing the object-evoked signal modulations in amplitude and waveform with two types of epidermal electroreceptors (active electrolocation) [9-12]. Electrical capacitive objects (animals, plants) modulate both parameters; resistive targets (e.g., rocks) modulate only the signal's amplitude [11, 12]. Ambiguities of electrosensory inputs arise when object size, distance, or position vary. While previous reports suggest electrosensory disambiguations when both modulations are combined as electric colors [8, 13, 14], this concept has never been demonstrated in a natural, behaviorally relevant context. Here, we assessed electric-color perception (1) by recording object-evoked signal modulations and (2) by testing the fishes' behavioral responses to these objects during foraging. We found that modulations caused by aquatic animals or plants provided electric colors when combined as a ratio. Individual electric colors designated crucial targets (electric fish, prey insect larvae, or others) irrespective of their size, distance, or position. In behavioral tests, electrolocating fish reliably identified prey insect larvae of varying sizes from different distances and did not differentiate between artificial prey items generating similar electric colors. Our results indicate a color-like perceptual cue during active electrolocation, the computation [15], reliability, and use of which resemble those of color in vision. This suggests "color" perception as a sensory concept beyond vision and passive sensing.
Collapse
Affiliation(s)
- Martin Gottwald
- Institute of Zoology, Department of Neuroethology/Sensory Ecology, University of Bonn, Meckenheimer Allee 169, 53115 Bonn, Germany.
| | - Neha Singh
- Institute of Zoology, Department of Neuroethology/Sensory Ecology, University of Bonn, Meckenheimer Allee 169, 53115 Bonn, Germany; Zoological Research Museum Alexander Koenig, Department Diptera, University of Bonn, Adenauerallee 160, 53113 Bonn, Germany
| | - André N Haubrich
- Institute of Zoology, Department of Neuroethology/Sensory Ecology, University of Bonn, Meckenheimer Allee 169, 53115 Bonn, Germany; Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Sophia Regett
- Institute of Zoology, Department of Neuroethology/Sensory Ecology, University of Bonn, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Gerhard von der Emde
- Institute of Zoology, Department of Neuroethology/Sensory Ecology, University of Bonn, Meckenheimer Allee 169, 53115 Bonn, Germany
| |
Collapse
|
23
|
Endler JA, Cole GL, Kranz AM. Boundary strength analysis: Combining colour pattern geometry and coloured patch visual properties for use in predicting behaviour and fitness. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John A. Endler
- Centre for Integrative EcologySchool of Life & Environmental SciencesDeakin University Waurn Ponds Victoria Australia
| | - Gemma L. Cole
- Centre for Integrative EcologySchool of Life & Environmental SciencesDeakin University Waurn Ponds Victoria Australia
| | - Alexandrea M. Kranz
- Centre for Integrative EcologySchool of Life & Environmental SciencesDeakin University Waurn Ponds Victoria Australia
| |
Collapse
|
24
|
Hypothesis on monochromatic vision in scorpionflies questioned by new transcriptomic data. Sci Rep 2018; 8:9872. [PMID: 29959337 PMCID: PMC6026179 DOI: 10.1038/s41598-018-28098-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 06/12/2018] [Indexed: 11/08/2022] Open
Abstract
In the scorpionfly Panorpa, a recent study suggested monochromatic vision due to evidence of only a single opsin found in transcriptome data. To reconsider this hypothesis, the present study investigates opsin expression using transcriptome data of 21 species including representatives of all major lineages of scorpionflies (Mecoptera) and of three families of their closest relatives, the fleas (Siphonaptera). In most mecopteran species investigated, transcripts encode two opsins with predicted peak absorbances in the green, two in the blue, and one in the ultraviolet spectral region. Only in groups with reduced or absent ocelli, like Caurinus and Apteropanorpa, less than four visual opsin messenger RNAs have been identified. In addition, we found a Rh7-like opsin in transcriptome data derived from larvae of the mecopteran Nannochorista, and in two flea species. Peropsin expression was observed in two mecopterans. In light of these new data, we question the hypothesis on monochromatic vision in the genus Panorpa. In a broader phylogenetic perspective, it is suggested that the common ancestor of the monophyletic taxon Antliophora (Diptera, Mecoptera and Siphonaptera) possessed the full set of visual opsins, a Rh7-like opsin, and in addition a pteropsin as well as a peropsin. In the course of evolution individual opsins were likely lost in several lineages of this clade.
Collapse
|
25
|
Distance-dependent defensive coloration in the poison frog Dendrobates tinctorius, Dendrobatidae. Proc Natl Acad Sci U S A 2018; 115:6416-6421. [PMID: 29866847 DOI: 10.1073/pnas.1800826115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poison dart frogs provide classic examples of warning signals: potent toxins signaled by distinctive, conspicuous coloration. We show that, counterintuitively, the bright yellow and blue-black color of Dendrobates tinctorius (Dendrobatidae) also provides camouflage. Through computational modeling of predator vision, and a screen-based detection experiment presenting frogs at different spatial resolutions, we demonstrate that at close range the frog is highly detectable, but from a distance the colors blend together, forming effective camouflage. This result was corroborated with an in situ experiment, which found survival to be background-dependent, a feature more associated with camouflage than aposematism. Our results suggest that in D. tinctorius the distribution of pattern elements, and the particular colors expressed, act as a highly salient close range aposematic signal, while simultaneously minimizing detectability to distant observers.
Collapse
|
26
|
Strube-Bloss MF, Rössler W. Multimodal integration and stimulus categorization in putative mushroom body output neurons of the honeybee. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171785. [PMID: 29515886 PMCID: PMC5830775 DOI: 10.1098/rsos.171785] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/15/2018] [Indexed: 06/11/2023]
Abstract
Flowers attract pollinating insects like honeybees by sophisticated compositions of olfactory and visual cues. Using honeybees as a model to study olfactory-visual integration at the neuronal level, we focused on mushroom body (MB) output neurons (MBON). From a neuronal circuit perspective, MBONs represent a prominent level of sensory-modality convergence in the insect brain. We established an experimental design allowing electrophysiological characterization of olfactory, visual, as well as olfactory-visual induced activation of individual MBONs. Despite the obvious convergence of olfactory and visual pathways in the MB, we found numerous unimodal MBONs. However, a substantial proportion of MBONs (32%) responded to both modalities and thus integrated olfactory-visual information across MB input layers. In these neurons, representation of the olfactory-visual compound was significantly increased compared with that of single components, suggesting an additive, but nonlinear integration. Population analyses of olfactory-visual MBONs revealed three categories: (i) olfactory, (ii) visual and (iii) olfactory-visual compound stimuli. Interestingly, no significant differentiation was apparent regarding different stimulus qualities within these categories. We conclude that encoding of stimulus quality within a modality is largely completed at the level of MB input, and information at the MB output is integrated across modalities to efficiently categorize sensory information for downstream behavioural decision processing.
Collapse
|
27
|
Barnett JB, Cuthill IC, Scott-Samuel NE. Distance-dependent aposematism and camouflage in the cinnabar moth caterpillar ( Tyria jacobaeae, Erebidae). ROYAL SOCIETY OPEN SCIENCE 2018; 5:171396. [PMID: 29515858 PMCID: PMC5830747 DOI: 10.1098/rsos.171396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/18/2018] [Indexed: 07/27/2023]
Abstract
Defended prey often use distinctive, conspicuous, colours to advertise their unprofitability to potential predators (aposematism). These warning signals are frequently made up of salient, high contrast, stripes which have been hypothesized to increase the speed and accuracy of predator avoidance learning. Limitations in predator visual acuity, however, mean that these patterns cannot be resolved when viewed from a distance, and adjacent patches of colour will blend together (pattern blending). We investigated how saliency changes at different viewing distances in the toxic and brightly coloured cinnabar moth caterpillar (Tyria jacobaeae). We found that although the caterpillars' orange-and-black stripes are highly salient at close range, when viewed from a distance the colours blend together to match closely those of the background. Cinnabar caterpillars therefore produce a distance-dependent signal combining salient aposematism with targeted background matching camouflage, without necessarily compromising the size or saturation of their aposematic signal.
Collapse
Affiliation(s)
- James B. Barnett
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | |
Collapse
|
28
|
Lebhardt F, Desplan C. Retinal perception and ecological significance of color vision in insects. CURRENT OPINION IN INSECT SCIENCE 2017; 24:75-83. [PMID: 29208227 PMCID: PMC5726413 DOI: 10.1016/j.cois.2017.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/12/2017] [Indexed: 05/09/2023]
Abstract
Color vision relies on the ability to discriminate different wavelengths and is often improved in insects that inhabit well-lit, spectrally rich environments. Although the Opsin proteins themselves are sensitive to specific wavelength ranges, other factors can alter and further restrict the sensitivity of photoreceptors to allow for finer color discrimination and thereby more informed decisions while interacting with the environment. The ability to discriminate colors differs between insects that exhibit different life styles, between female and male eyes of the same species, and between regions of the same eye, depending on the requirements of intraspecific communication and ecological demands.
Collapse
Affiliation(s)
- Fleur Lebhardt
- Department of Biology, New York University, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, NY 10003, USA.
| |
Collapse
|
29
|
Olsson P, Lind O, Kelber A. Chromatic and achromatic vision: parameter choice and limitations for reliable model predictions. Behav Ecol 2017. [DOI: 10.1093/beheco/arx133] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peter Olsson
- Department of Biology, Lund University, Lund, Sweden
| | - Olle Lind
- Department of Philosophy, Lund University, Lund, Sweden
| | - Almut Kelber
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Garcia JE, Spaethe J, Dyer AG. The path to colour discrimination is S-shaped: behaviour determines the interpretation of colour models. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:983-997. [DOI: 10.1007/s00359-017-1208-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 10/18/2022]
|
31
|
Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Hill GE, Jablonski NG, Jiggins CD, Kelber A, Mappes J, Marshall J, Merrill R, Osorio D, Prum R, Roberts NW, Roulin A, Rowland HM, Sherratt TN, Skelhorn J, Speed MP, Stevens M, Stoddard MC, Stuart-Fox D, Talas L, Tibbetts E, Caro T. The biology of color. Science 2017; 357:357/6350/eaan0221. [DOI: 10.1126/science.aan0221] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Escobar-Camacho D, Marshall J, Carleton KL. Behavioral color vision in a cichlid fish: Metriaclima benetos. ACTA ACUST UNITED AC 2017; 220:2887-2899. [PMID: 28546509 DOI: 10.1242/jeb.160473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 01/30/2023]
Abstract
Color vision is the capacity to discriminate color regardless of brightness. It is essential for many fish species as they rely on color discrimination for numerous ecological tasks. The study of color vision is important because it can unveil the mechanisms that shape coloration patterns, visual system sensitivities and, hence, visual signals. In order to better understand the mechanisms underlying color vision, an integrative approach is necessary. This usually requires combining behavioral, physiological and genetic experiments with quantitative modeling, resulting in a distinctive characterization of the visual system. Here, we provide new data on the color vision of a rock-dwelling cichlid from Lake Malawi: Metriaclima benetos. For this study we used a behavioral approach to demonstrate color vision through classical conditioning, complemented with modeling of color vision to estimate color contrast. For our experiments we took into account opsin coexpression and considered whether cichlids exhibit a dichromatic or a trichromatic visual system. Behavioral experiments confirmed color vision in M. benetos; most fish were significantly more likely to choose the trained over the distracter stimuli, irrespective of brightness. Our results are supported by visual modeling that suggests that cichlids are trichromats and achieve color vision through color opponency mechanisms, which are a result of three different photoreceptor channels. Our analyses also suggest that opsin coexpression can negatively affect perceived color contrast. This study is particularly relevant for research on the cichlid lineage because cichlid visual capabilities and coloration patterns are implicated in their adaptive radiation.
Collapse
Affiliation(s)
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|