1
|
Wittmann MK, Lin Y, Pan D, Braun MN, Dickson C, Spiering L, Luo S, Harbison C, Abdurahman A, Hamilton S, Faber NS, Khalighinejad N, Lockwood PL, Rushworth MFS. Basis functions for complex social decisions in dorsomedial frontal cortex. Nature 2025; 641:707-717. [PMID: 40074892 PMCID: PMC12074988 DOI: 10.1038/s41586-025-08705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2025] [Indexed: 03/14/2025]
Abstract
Navigating social environments is a fundamental challenge for the brain. It has been established that the brain solves this problem, in part, by representing social information in an agent-centric manner; knowledge about others' abilities or attitudes is tagged to individuals such as 'oneself' or the 'other'1-6. This intuitive approach has informed the understanding of key nodes in the social parts of the brain, the dorsomedial prefrontal cortex (dmPFC) and the anterior cingulate cortex (ACC)7-9. However, the patterns or combinations in which individuals might interact with one another is as important as the identities of the individuals. Here, in four studies using functional magnetic resonance imaging, behavioural experiments and a social group decision-making task, we show that the dmPFC and ACC represent the combinatorial possibilities for social interaction afforded by a given situation, and that they do so in a compressed format resembling the basis functions used in spatial, visual and motor domains10-12. The basis functions align with social interaction types, as opposed to individual identities. Our results indicate that there are deep analogies between abstract neural coding schemes in the visual and motor domain and the construction of our sense of social identity.
Collapse
Affiliation(s)
- Marco K Wittmann
- Department of Experimental Psychology, University College London, London, UK.
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Yongling Lin
- Department of Experimental Psychology, University College London, London, UK
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Deng Pan
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Moritz N Braun
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Cormac Dickson
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Lisa Spiering
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Shuyi Luo
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Caroline Harbison
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Ayat Abdurahman
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sorcha Hamilton
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychology, University of Bath, Bath, UK
| | - Nadira S Faber
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Psychology, University of Bremen, Bremen, Germany
- Uehiro Oxford Institute, University of Oxford, Oxford, UK
| | - Nima Khalighinejad
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Patricia L Lockwood
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Matthew F S Rushworth
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (MRI), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Laurenzi M, Raffone A, Gallagher S, Chiarella SG. A multidimensional approach to the self in non-human animals through the Pattern Theory of Self. Front Psychol 2025; 16:1561420. [PMID: 40271366 PMCID: PMC12014599 DOI: 10.3389/fpsyg.2025.1561420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
In the last decades, research on animal consciousness has advanced significantly, fueled by interdisciplinary contributions. However, a critical dimension of animal experience remains underexplored: the self. While traditionally linked to human studies, research focused on the self in animals has often been framed dichotomously, distinguishing low-level, bodily, and affective aspects from high-level, cognitive, and conceptual dimensions. Emerging evidence suggests a broader spectrum of self-related features across species, yet current theoretical approaches often reduce the self to a derivative aspect of consciousness or prioritize narrow high-level dimensions, such as self-recognition or metacognition. To address this gap, we propose an integrated framework grounded in the Pattern Theory of Self (PTS). PTS conceptualizes the self as a dynamic, multidimensional construct arising from a matrix of dimensions, ranging from bodily and affective to intersubjective and normative aspects. We propose adopting this multidimensional perspective for the study of the self in animals, by emphasizing the graded nature of the self within each dimension and the non-hierarchical organization across dimensions. In this sense, PTS may accommodate both inter- and intra-species variability, enabling researchers to investigate the self across diverse organisms without relying on anthropocentric biases. We propose that, by integrating this framework with insights from comparative psychology, neuroscience, and ethology, the application of PTS to animals can show how the self emerges in varying degrees and forms, shaped by ecological niches and adaptive demands.
Collapse
Affiliation(s)
- Matteo Laurenzi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Shaun Gallagher
- Department of Philosophy, University of Memphis, Memphis, TN, United States
- School of Liberal Arts (SOLA), University of Wollongong, Wollongong, NSW, Australia
| | - Salvatore G. Chiarella
- School of Liberal Arts (SOLA), University of Wollongong, Wollongong, NSW, Australia
- International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
3
|
Li J, Aoi MC, Miller CT. Representing the dynamics of natural marmoset vocal behaviors in frontal cortex. Neuron 2024; 112:3542-3550.e3. [PMID: 39317185 PMCID: PMC11560606 DOI: 10.1016/j.neuron.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Here, we tested the respective contributions of primate premotor and prefrontal cortex to support vocal behavior. We applied a model-based generalized linear model (GLM) analysis that better accounts for the inherent variance in natural, continuous behaviors to characterize the activity of neurons throughout the frontal cortex as freely moving marmosets engaged in conversational exchanges. While analyses revealed functional clusters of neural activity related to the different processes involved in the vocal behavior, these clusters did not map to subfields of prefrontal or premotor cortex, as has been observed in more conventional task-based paradigms. Our results suggest a distributed functional organization for the myriad neural mechanisms underlying natural social interactions and have implications for our concepts of the role that frontal cortex plays in governing ethological behaviors in primates.
Collapse
Affiliation(s)
- Jingwen Li
- Cortical Systems & Behavior Lab, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Mikio C Aoi
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cory T Miller
- Cortical Systems & Behavior Lab, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Zhao M, Li R, Xiang S, Liu N. Two different mirror neuron pathways for social and non-social actions? A meta-analysis of fMRI studies. Soc Cogn Affect Neurosci 2024; 19:nsae068. [PMID: 39361133 PMCID: PMC11482255 DOI: 10.1093/scan/nsae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/19/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Mirror neurons (MNs) represent a class of neurons that are activated when performing or observing the same action. Given their role in social cognition and previous research in patients with psychiatric disorders, we proposed that the human MN system (MNS) might display different pathways for social and non-social actions. To examine this hypothesis, we conducted a comprehensive meta-analysis of 174 published human functional magnetic resonance imaging studies. Our findings confirmed the proposed hypothesis. Our results demonstrated that the non-social MN pathway exhibited a more classical pattern of frontoparietal activation, whereas the social MN pathway was activated less in the parietal lobe but more in the frontal lobe, limbic lobe, and sublobar regions. Additionally, our findings revealed a modulatory role of the effector (i.e. face and hands) within this framework: some areas exhibited effector-independent activation, while others did not. This novel subdivision provides valuable theoretical support for further investigations into the neural mechanisms underlying the MNS and its related disorders.
Collapse
Affiliation(s)
- Minghui Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijia Xiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Froesel M, Gacoin M, Clavagnier S, Hauser M, Goudard Q, Ben Hamed S. Macaque claustrum, pulvinar and putative dorsolateral amygdala support the cross-modal association of social audio-visual stimuli based on meaning. Eur J Neurosci 2024; 59:3203-3223. [PMID: 38637993 DOI: 10.1111/ejn.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024]
Abstract
Social communication draws on several cognitive functions such as perception, emotion recognition and attention. The association of audio-visual information is essential to the processing of species-specific communication signals. In this study, we use functional magnetic resonance imaging in order to identify the subcortical areas involved in the cross-modal association of visual and auditory information based on their common social meaning. We identified three subcortical regions involved in audio-visual processing of species-specific communicative signals: the dorsolateral amygdala, the claustrum and the pulvinar. These regions responded to visual, auditory congruent and audio-visual stimulations. However, none of them was significantly activated when the auditory stimuli were semantically incongruent with the visual context, thus showing an influence of visual context on auditory processing. For example, positive vocalization (coos) activated the three subcortical regions when presented in the context of positive facial expression (lipsmacks) but not when presented in the context of negative facial expression (aggressive faces). In addition, the medial pulvinar and the amygdala presented multisensory integration such that audiovisual stimuli resulted in activations that were significantly higher than those observed for the highest unimodal response. Last, the pulvinar responded in a task-dependent manner, along a specific spatial sensory gradient. We propose that the dorsolateral amygdala, the claustrum and the pulvinar belong to a multisensory network that modulates the perception of visual socioemotional information and vocalizations as a function of the relevance of the stimuli in the social context. SIGNIFICANCE STATEMENT: Understanding and correctly associating socioemotional information across sensory modalities, such that happy faces predict laughter and escape scenes predict screams, is essential when living in complex social groups. With the use of functional magnetic imaging in the awake macaque, we identify three subcortical structures-dorsolateral amygdala, claustrum and pulvinar-that only respond to auditory information that matches the ongoing visual socioemotional context, such as hearing positively valenced coo calls and seeing positively valenced mutual grooming monkeys. We additionally describe task-dependent activations in the pulvinar, organizing along a specific spatial sensory gradient, supporting its role as a network regulator.
Collapse
Affiliation(s)
- Mathilda Froesel
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Maëva Gacoin
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Simon Clavagnier
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Marc Hauser
- Risk-Eraser, West Falmouth, Massachusetts, USA
| | - Quentin Goudard
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| |
Collapse
|
6
|
Tyree TJ, Metke M, Miller CT. Cross-modal representation of identity in the primate hippocampus. Science 2023; 382:417-423. [PMID: 37883535 PMCID: PMC11086670 DOI: 10.1126/science.adf0460] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/01/2023] [Indexed: 10/28/2023]
Abstract
Faces and voices are the dominant social signals used to recognize individuals among primates. Yet, it is not known how these signals are integrated into a cross-modal representation of individual identity in the primate brain. We discovered that, although single neurons in the marmoset hippocampus exhibited selective responses when presented with the face or voice of a specific individual, a parallel mechanism for representing the cross-modal identities for multiple individuals was evident within single neurons and at the population level. Manifold projections likewise showed the separability of individuals as well as clustering for others' families, which suggests that multiple learned social categories are encoded as related dimensions of identity in the hippocampus. Neural representations of identity in the hippocampus are thus both modality independent and reflect the primate social network.
Collapse
Affiliation(s)
- Timothy J Tyree
- Cortical Systems and Behavior Laboratory, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
- Department of Physics, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
| | - Michael Metke
- Cortical Systems and Behavior Laboratory, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
- Neurosciences Graduate Program, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
- Neurosciences Graduate Program, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
| |
Collapse
|
7
|
Lundwall RA. Visual reflexive attention as a useful measure of development. Front Psychol 2023; 14:1206045. [PMID: 37680236 PMCID: PMC10482252 DOI: 10.3389/fpsyg.2023.1206045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
Cognitive psychology began over three-quarters of a century ago and we have learned a great deal in that time, including concerning the development of cognitive abilities such as perception, attention, and memory, all of which develop across infancy and childhood. Attention is one aspect of cognition that is vital to success in a variety of life activities and, arguably, the foundation of memory, learning, problem solving, decision making, and other cognitive activities. The cognitive abilities of later childhood and adulthood generally appear to depend on the reflexes, abilities, and skills of infancy. Research in developmental cognitive science can help us understand adult cognition and know when to intervene when cognitive function is at risk. This area of research can be challenging because, even in typical development, the course of cognitive development for a particular child does not always improve monotonically. In addition, the typical trajectory of this development has been understood differently from different historical perspectives. Neither the history of thought that has led to our current understanding of attention (including its various types) nor the importance of developmental aspects of attention are frequently covered in training early career researchers, especially those whose primary area of research in not attention. My goal is to provide a review that will be useful especially to those new to research in the subfield of attention. Sustained attention in adults and children has been well-studied, but a review of the history of thought on the development of reflexive attention with a focus on infancy is overdue. Therefore, I draw primarily on historical and modern literature and clarify confusing terminology as it has been used over time. I conclude with examples of how cognitive development research can contribute to scientific and applied progress.
Collapse
|
8
|
Putnam PT, Chu CCJ, Fagan NA, Dal Monte O, Chang SWC. Dissociation of vicarious and experienced rewards by coupling frequency within the same neural pathway. Neuron 2023; 111:2513-2522.e4. [PMID: 37348507 PMCID: PMC10527039 DOI: 10.1016/j.neuron.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Vicarious reward, essential to social learning and decision making, is theorized to engage select brain regions similarly to experienced reward to generate a shared experience. However, it is just as important for neural systems to also differentiate vicarious from experienced rewards for social interaction. Here, we investigated the neuronal interaction between the primate anterior cingulate cortex gyrus (ACCg) and the basolateral amygdala (BLA) when social choices made by monkeys led to either vicarious or experienced reward. Coherence between ACCg spikes and BLA local field potential (LFP) selectively increased in gamma frequencies for vicarious reward, whereas it selectively increased in alpha/beta frequencies for experienced reward. These respectively enhanced couplings for vicarious and experienced rewards were uniquely observed following voluntary choices. Moreover, reward outcomes had consistently strong directional influences from ACCg to BLA. Our findings support a mechanism of vicarious reward where social agency is tagged by interareal coordination frequency within the same shared pathway.
Collapse
Affiliation(s)
- Philip T Putnam
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Cheng-Chi J Chu
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Nicholas A Fagan
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Psychology, University of Turin, Torino, Italy
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
9
|
Cordoni G, Comin M, Collarini E, Robino C, Chierto E, Norscia I. Domestic pigs (Sus scrofa) engage in non-random post-conflict affiliation with third parties: cognitive and functional implications. Anim Cogn 2023; 26:687-701. [PMID: 36344830 PMCID: PMC9950185 DOI: 10.1007/s10071-022-01688-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/09/2022]
Abstract
In social mammals, conflict resolution involves the reunion of former opponents (aggressor and victim) after an aggressive event (reconciliation) or post-conflict triadic contacts with a third party, started by either opponent (solicited-TSC) or spontaneously offered by the third party (unsolicited-TUC). These post-conflict strategies can serve different functions, including consolation (specifically when TUCs reduce the victim's anxiety). We investigated the possible presence and modulating factors of such strategies on semi-free ranging pigs (Sus scrofa; N = 104), housed at the ethical farm Parva Domus (Cavagnolo, Italy). Kinship was known. Reconciliation was present and mainly occurred between weakly related pigs to possibly improve tolerant cohabitation. Triadic contacts (all present except aggressor TSCs) mostly occurred between close kin. TSCs enacted by victims reduced neither their post-conflict anxiety behaviors nor further attacks by the previous aggressor, possibly because TSCs remained largely unreciprocated. TUCs towards aggressors did not reduce aggressor post-conflict anxiety but limited aggression redirection towards third parties. TUCs towards the victim reduced the victim but not the third-party's anxiety. However, TUCs may also provide inclusive fitness benefits to third parties by benefiting close kin. In sum, pigs engaged in non-random solicited/unsolicited triadic contacts, which suggests that pigs might possess socio-emotional regulation abilities to change their own or others' experience and elements of social appraisal, necessary to detect the emotional arousal of relevant others and (in case of TUCs) take the agency to restore homeostasis.
Collapse
Affiliation(s)
- Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy.
| | - Marta Comin
- grid.7605.40000 0001 2336 6580Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Edoardo Collarini
- grid.7605.40000 0001 2336 6580Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Carlo Robino
- grid.7605.40000 0001 2336 6580Department of Public Health Sciences and Pediatrics, University of Torino, Turin, Italy
| | - Elena Chierto
- grid.7605.40000 0001 2336 6580Department of Public Health Sciences and Pediatrics, University of Torino, Turin, Italy
| | - Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy.
| |
Collapse
|
10
|
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
12
|
Wei JA, Han Q, Luo Z, Liu L, Cui J, Tan J, Chow BKC, So KF, Zhang L. Amygdala neural ensemble mediates mouse social investigation behaviors. Natl Sci Rev 2022; 10:nwac179. [PMID: 36845323 PMCID: PMC9952061 DOI: 10.1093/nsr/nwac179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Innate social investigation behaviors are critical for animal survival and are regulated by both neural circuits and neuroendocrine factors. Our understanding of how neuropeptides regulate social interest, however, is incomplete at the current stage. In this study, we identified the expression of secretin (SCT) in a subpopulation of excitatory neurons in the basolateral amygdala. With distinct molecular and physiological features, BLASCT+ cells projected to the medial prefrontal cortex and were necessary and sufficient for promoting social investigation behaviors, whilst other basolateral amygdala neurons were anxiogenic and antagonized social behaviors. Moreover, the exogenous application of secretin effectively promoted social interest in both healthy and autism spectrum disorder model mice. These results collectively demonstrate a previously unrecognized group of amygdala neurons for mediating social behaviors and suggest promising strategies for social deficits.
Collapse
Affiliation(s)
| | | | | | - Linglin Liu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jing Cui
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jiahui Tan
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China,State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510030, China,BiolandLaboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510006, China,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 220619, China,Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266113, China,Institute of Clinical Research for Mental Health, Jinan University, Guangzhou 510632, China
| | | |
Collapse
|
13
|
Socially meaningful visual context either enhances or inhibits vocalisation processing in the macaque brain. Nat Commun 2022; 13:4886. [PMID: 35985995 PMCID: PMC9391382 DOI: 10.1038/s41467-022-32512-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Social interactions rely on the interpretation of semantic and emotional information, often from multiple sensory modalities. Nonhuman primates send and receive auditory and visual communicative signals. However, the neural mechanisms underlying the association of visual and auditory information based on their common social meaning are unknown. Using heart rate estimates and functional neuroimaging, we show that in the lateral and superior temporal sulcus of the macaque monkey, neural responses are enhanced in response to species-specific vocalisations paired with a matching visual context, or when vocalisations follow, in time, visual information, but inhibited when vocalisation are incongruent with the visual context. For example, responses to affiliative vocalisations are enhanced when paired with affiliative contexts but inhibited when paired with aggressive or escape contexts. Overall, we propose that the identified neural network represents social meaning irrespective of sensory modality. Social interaction involves processing semantic and emotional information. Here the authors show that in the macaque monkey lateral and superior temporal sulcus, cortical activity is enhanced in response to species-specific vocalisations predicted by matching face or social visual stimuli but inhibited when vocalisations are incongruent with the predictive visual context.
Collapse
|
14
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part II: Neural basis. Neuropsychologia 2022; 173:108279. [PMID: 35667496 DOI: 10.1016/j.neuropsychologia.2022.108279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Patient PS sustained her dramatic brain injury in 1992, the same year as the first report of a neuroimaging study of human face recognition. The present paper complements the review on the functional nature of PS's prosopagnosia (part I), illustrating how her case study directly, i.e., through neuroimaging investigations of her brain structure and activity, but also indirectly, through neural studies performed on other clinical cases and neurotypical individuals, inspired and constrained neural models of human face recognition. In the dominant right hemisphere for face recognition in humans, PS's main lesion concerns (inputs to) the inferior occipital gyrus (IOG), in a region where face-selective activity is typically found in normal individuals ('Occipital Face Area', OFA). Her case study initially supported the criticality of this region for face identity recognition (FIR) and provided the impetus for transcranial magnetic stimulation (TMS), intracerebral electrical stimulation, and cortical surgery studies that have generally supported this view. Despite PS's right IOG lesion, typical face-selectivity is found anteriorly in the middle portion of the fusiform gyrus, a hominoid structure (termed the right 'Fusiform Face Area', FFA) that is widely considered to be the most important region for human face recognition. This finding led to the original proposal of direct anatomico-functional connections from early visual cortices to the FFA, bypassing the IOG/OFA (lulu), a hypothesis supported by further neuroimaging studies of PS, other neurological cases and neuro-typical individuals with original visual stimulation paradigms, data recordings and analyses. The proposal of a lack of sensitivity to face identity in PS's right FFA due to defective reentrant inputs from the IOG/FFA has also been supported by other cases, functional connectivity and cortical surgery studies. Overall, neural studies of, and based on, the case of prosopagnosia PS strongly question the hierarchical organization of the human neural face recognition system, supporting a more flexible and dynamic view of this key social brain function.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; CHRU-Nancy, Service de Neurologie, F-5400, France; Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Belgium.
| |
Collapse
|
15
|
Dal Monte O, Fan S, Fagan NA, Chu CCJ, Zhou MB, Putnam PT, Nair AR, Chang SWC. Widespread implementations of interactive social gaze neurons in the primate prefrontal-amygdala networks. Neuron 2022; 110:2183-2197.e7. [PMID: 35545090 DOI: 10.1016/j.neuron.2022.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/10/2022] [Accepted: 04/09/2022] [Indexed: 01/16/2023]
Abstract
Social gaze interaction powerfully shapes interpersonal communication. However, compared with social perception, very little is known about the neuronal underpinnings of real-life social gaze interaction. Here, we studied a large number of neurons spanning four regions in primate prefrontal-amygdala networks and demonstrate robust single-cell foundations of interactive social gaze in the orbitofrontal, dorsomedial prefrontal, and anterior cingulate cortices, in addition to the amygdala. Many neurons in these areas exhibited high temporal heterogeneity for social discriminability, with a selectivity bias for looking at a conspecific compared with an object. Notably, a large proportion of neurons in each brain region parametrically tracked the gaze of self or other, providing substrates for social gaze monitoring. Furthermore, several neurons displayed selective encoding of mutual eye contact in an agent-specific manner. These findings provide evidence of widespread implementations of interactive social gaze neurons in the primate prefrontal-amygdala networks during social gaze interaction.
Collapse
Affiliation(s)
- Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Psychology, University of Turin, 10124 Torino, Italy
| | - Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Nicholas A Fagan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Cheng-Chi J Chu
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Michael B Zhou
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Philip T Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
16
|
Demuru E, Clay Z, Norscia I. What makes us apes? The emotional building blocks of intersubjectivity in hominids. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2044390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Elisa Demuru
- Laboratoire Dynamique du Langage, CNRS UMR 5596, University of Lyon 2, Lyon, France
- Équipe de Neuro-éthologie Sensorielle, ENES/CRNL, CNRS UMR 5292, Inserm UMR S 1028, University of Lyon/Saint-Étienne, Saint-Étienne, France
| | - Zanna Clay
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
| | - Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10123, Italy
| |
Collapse
|
17
|
Rasia-Filho AA. Unraveling Brain Microcircuits, Dendritic Spines, and Synaptic Processing Using Multiple Complementary Approaches. Front Physiol 2022; 13:831568. [PMID: 35295578 PMCID: PMC8918670 DOI: 10.3389/fphys.2022.831568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alberto A. Rasia-Filho
- Department of Basic Sciences/Physiology, Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
18
|
Li M, Ju N, Jiang R, Liu F, Jiang H, Macknik S, Martinez-Conde S, Tang S. Perceptual hue, lightness, and chroma are represented in a multidimensional functional anatomical map in macaque V1. Prog Neurobiol 2022; 212:102251. [PMID: 35182707 DOI: 10.1016/j.pneurobio.2022.102251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/02/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
Humans perceive millions of colors along three dimensions of color space: hue, lightness, and chroma. A major gap in knowledge is where the brain represents these specific dimensions in cortex, and how they relate to each other. Previous studies have shown that brain areas V4 and the posterior inferotemporal cortex (PIT) are central to computing color dimensions. To determine the contribution of V1 to setting up these downstream processing mechanisms, we studied cortical color responses in macaques-who share color vision mechanisms with humans. We used two-photon calcium imaging at both meso- and micro-scales and found that hue and lightness are laid out in orthogonal directions on the cortical map, with chroma represented by the strength of neuronal responses, as previously shown in PIT. These findings suggest that the earliest cortical stages of vision determine the three primary dimensions of human color perception.
Collapse
Affiliation(s)
- Ming Li
- Peking University School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; IDG/McGovern Institute for Brain Research at Peking University, Beijing 100871, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875 Beijing, China.
| | - Niansheng Ju
- Peking University School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; IDG/McGovern Institute for Brain Research at Peking University, Beijing 100871, China
| | - Rundong Jiang
- Peking University School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; IDG/McGovern Institute for Brain Research at Peking University, Beijing 100871, China
| | - Fang Liu
- Peking University School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; IDG/McGovern Institute for Brain Research at Peking University, Beijing 100871, China
| | - Hongfei Jiang
- Peking University School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; IDG/McGovern Institute for Brain Research at Peking University, Beijing 100871, China
| | - Stephen Macknik
- State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, 11203 USA
| | - Susana Martinez-Conde
- State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, 11203 USA
| | - Shiming Tang
- Peking University School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; IDG/McGovern Institute for Brain Research at Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Fuentealba-Villarroel FJ, Renner J, Hilbig A, Bruton OJ, Rasia-Filho AA. Spindle-Shaped Neurons in the Human Posteromedial (Precuneus) Cortex. Front Synaptic Neurosci 2022; 13:769228. [PMID: 35087390 PMCID: PMC8787311 DOI: 10.3389/fnsyn.2021.769228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
The human posteromedial cortex (PMC), which includes the precuneus (PC), represents a multimodal brain area implicated in emotion, conscious awareness, spatial cognition, and social behavior. Here, we describe the presence of Nissl-stained elongated spindle-shaped neurons (suggestive of von Economo neurons, VENs) in the cortical layer V of the anterior and central PC of adult humans. The adapted "single-section" Golgi method for postmortem tissue was used to study these neurons close to pyramidal ones in layer V until merging with layer VI polymorphic cells. From three-dimensional (3D) reconstructed images, we describe the cell body, two main longitudinally oriented ascending and descending dendrites as well as the occurrence of spines from proximal to distal segments. The primary dendritic shafts give rise to thin collateral branches with a radial orientation, and pleomorphic spines were observed with a sparse to moderate density along the dendritic length. Other spindle-shaped cells were observed with straight dendritic shafts and rare branches or with an axon emerging from the soma. We discuss the morphology of these cells and those considered VENs in cortical areas forming integrated brain networks for higher-order activities. The presence of spindle-shaped neurons and the current discussion on the morphology of putative VENs address the need for an in-depth neurochemical and transcriptomic characterization of the PC cytoarchitecture. These findings would include these spindle-shaped cells in the synaptic and information processing by the default mode network and for general intelligence in healthy individuals and in neuropsychiatric disorders involving the PC in the context of the PMC functioning.
Collapse
Affiliation(s)
- Francisco Javier Fuentealba-Villarroel
- Department of Basic Sciences/Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Josué Renner
- Department of Basic Sciences/Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Arlete Hilbig
- Department of Medical Clinics/Neurology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Oliver J Bruton
- Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
20
|
Gao X, Wen M, Sun M, Rossion B. A Genuine Interindividual Variability in Number and Anatomical Localization of Face-Selective Regions in the Human Brain. Cereb Cortex 2022; 32:4834-4856. [PMID: 35088077 DOI: 10.1093/cercor/bhab519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroimaging studies have reported regions with more neural activation to face than nonface stimuli in the human occipitotemporal cortex for three decades. Here we used a highly sensitive and reliable frequency-tagging functional magnetic resonance imaging paradigm measuring high-level face-selective neural activity to assess interindividual variability in the localization and number of face-selective clusters. Although the majority of these clusters are located in the same cortical gyri and sulci across 25 adult brains, a volume-based analysis of unsmoothed data reveals a large amount of interindividual variability in their spatial distribution and number, particularly in the ventral occipitotemporal cortex. In contrast to the widely held assumption, these face-selective clusters cannot be objectively related on a one-to-one basis across individual brains, do not correspond to a single cytoarchitectonic region, and are not clearly demarcated by estimated posteroanterior cytoarchitectonic borders. Interindividual variability in localization and number of cortical face-selective clusters does not appear to be due to the measurement noise but seems to be genuine, casting doubt on definite labeling and interindividual correspondence of face-selective "areas" and questioning their a priori definition based on cytoarchitectony or probabilistic atlases of independent datasets. These observations challenge conventional models of human face recognition based on a fixed number of discrete neurofunctional information processing stages.
Collapse
Affiliation(s)
- Xiaoqing Gao
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310028, China
| | - Minjie Wen
- Department of Psychology, Zhejiang University, Hangzhou 310028, China
| | - Mengdan Sun
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310028, China
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
21
|
Zhang W, Rose MC, Yartsev MM. A unifying mechanism governing inter-brain neural relationship during social interactions. eLife 2022; 11:70493. [PMID: 35142287 PMCID: PMC8947764 DOI: 10.7554/elife.70493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/08/2022] [Indexed: 01/23/2023] Open
Abstract
A key goal of social neuroscience is to understand the inter-brain neural relationship-the relationship between the neural activity of socially interacting individuals. Decades of research investigating this relationship have focused on the similarity in neural activity across brains. Here, we instead asked how neural activity differs between brains, and how that difference evolves alongside activity patterns shared between brains. Applying this framework to bats engaged in spontaneous social interactions revealed two complementary phenomena characterizing the inter-brain neural relationship: fast fluctuations of activity difference across brains unfolding in parallel with slow activity covariation across brains. A model reproduced these observations and generated multiple predictions that we confirmed using experimental data involving pairs of bats and a larger social group of bats. The model suggests that a simple computational mechanism involving positive and negative feedback could explain diverse experimental observations regarding the inter-brain neural relationship.
Collapse
Affiliation(s)
- Wujie Zhang
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Maimon C Rose
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Michael M Yartsev
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
22
|
Báez-Mendoza R, Vázquez Y, Mastrobattista EP, Williams ZM. Neuronal Circuits for Social Decision-Making and Their Clinical Implications. Front Neurosci 2021; 15:720294. [PMID: 34658766 PMCID: PMC8517320 DOI: 10.3389/fnins.2021.720294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Social living facilitates individual access to rewards, cognitive resources, and objects that would not be otherwise accessible. There are, however, some drawbacks to social living, particularly when competing for scarce resources. Furthermore, variability in our ability to make social decisions can be associated with neuropsychiatric disorders. The neuronal mechanisms underlying social decision-making are beginning to be understood. The momentum to study this phenomenon has been partially carried over by the study of economic decision-making. Yet, because of the similarities between these different types of decision-making, it is unclear what is a social decision. Here, we propose a definition of social decision-making as choices taken in a context where one or more conspecifics are involved in the decision or the consequences of it. Social decisions can be conceptualized as complex economic decisions since they are based on the subjective preferences between different goods. During social decisions, individuals choose based on their internal value estimate of the different alternatives. These are complex decisions given that conspecifics beliefs or actions could modify the subject's internal valuations at every choice. Here, we first review recent developments in our collective understanding of the neuronal mechanisms and circuits of social decision-making in primates. We then review literature characterizing populations with neuropsychiatric disorders showing deficits in social decision-making and the underlying neuronal circuitries associated with these deficits.
Collapse
Affiliation(s)
- Raymundo Báez-Mendoza
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yuriria Vázquez
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, United States
| | - Emma P. Mastrobattista
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ziv M. Williams
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Is the MSB hypothesis (music as a coevolved system for social bonding) testable in the Popperian sense? Behav Brain Sci 2021; 44:e70. [PMID: 34588070 DOI: 10.1017/s0140525x20001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
"Music As a Coevolved System for Social Bonding" (MSB) is a brilliant synthesis and appealing hypothesis offering insights into the evolution and social bonding of musicality, but is so broad and sweeping it will be challenging to test, prove or falsify in the Popperian sense (Popper, 1959). After general comments, I focus my critique on underlying neurobiological mechanisms, and offer some suggestions for experimental tests of MSB.
Collapse
|
24
|
Abstract
In order to understand ecologically meaningful social behaviors and their neural substrates in humans and other animals, researchers have been using a variety of social stimuli in the laboratory with a goal of extracting specific processes in real-life scenarios. However, certain stimuli may not be sufficiently effective at evoking typical social behaviors and neural responses. Here, we review empirical research employing different types of social stimuli by classifying them into five levels of naturalism. We describe the advantages and limitations while providing selected example studies for each level. We emphasize the important trade-off between experimental control and ecological validity across the five levels of naturalism. Taking advantage of newly emerging tools, such as real-time videos, virtual avatars, and wireless neural sampling techniques, researchers are now more than ever able to adopt social stimuli at a higher level of naturalism to better capture the dynamics and contingency of real-life social interaction.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Psychology, University of Turin, Torino, Italy
| | - Steve W.C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
25
|
Han M, Jiang G, Luo H, Shao Y. Neurobiological Bases of Social Networks. Front Psychol 2021; 12:626337. [PMID: 33995181 PMCID: PMC8119875 DOI: 10.3389/fpsyg.2021.626337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
A social network is a web that integrates multiple levels of interindividual social relationships and has direct associations with an individual’s health and well-being. Previous research has mainly focused on how brain and social network structures (structural properties) act on each other and on how the brain supports the spread of ideas and behaviors within social networks (functional properties). The structure of the social network is correlated with activity in the amygdala, which links decoding and interpreting social signals and social values. The structure also relies on the mentalizing network, which is central to an individual’s ability to infer the mental states of others. Network functional properties depend on multilayer brain-social networks, indicating that information transmission is supported by the default mode system, the valuation system, and the mentalizing system. From the perspective of neuroendocrinology, overwhelming evidence shows that variations in oxytocin, β-endorphin and dopamine receptor genes, including oxytocin receptor (OXTR), mu opioid receptor 1 (OPRM1) and dopamine receptor 2 (DRD2), predict an individual’s social network structure, whereas oxytocin also contributes to improved transmission of emotional and behavioral information from person to person. Overall, previous studies have comprehensively revealed the effects of the brain, endocrine system, and genes on social networks. Future studies are required to determine the effects of cognitive abilities, such as memory, on social networks, the characteristics and neural mechanism of social networks in mental illness and how social networks change over time through the use of longitudinal methods.
Collapse
Affiliation(s)
- Mengfei Han
- School of Psychology, Beijing Sport University, Beijing, China
| | - Gaofang Jiang
- College of Education, Cangzhou Normal University, Cangzhou, China
| | - Haoshuang Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| |
Collapse
|
26
|
Yizhar O, Levy DR. The social dilemma: prefrontal control of mammalian sociability. Curr Opin Neurobiol 2021; 68:67-75. [PMID: 33549950 DOI: 10.1016/j.conb.2021.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Mammalian social interactions are orchestrated by a wide array of neural circuits. While some aspects of social behaviors are driven by subcortical circuits, and are considered to be highly conserved and hard-wired, others require dynamic and context-dependent modulation that integrates current state, past experience and goal-driven action selection. These cognitive social processes are known to be dependent on the integrity of the prefrontal cortex. However, the circuit mechanisms through which the prefrontal cortex supports complex social functions are still largely unknown, and it is unclear if and how they diverge from prefrontal control of behavior outside of the social domain. Here we review recent studies exploring the role of prefrontal circuits in mammalian social functions, and attempt to synthesize these findings to a holistic view of prefrontal control of sociability.
Collapse
Affiliation(s)
- Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | - Dana R Levy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|