1
|
Seah C, Sidamon-Eristoff AE, Huckins LM, Brennand KJ. Implications of gene × environment interactions in post-traumatic stress disorder risk and treatment. J Clin Invest 2025; 135:e185102. [PMID: 40026250 PMCID: PMC11870735 DOI: 10.1172/jci185102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Exposure to traumatic stress is common in the general population. Variation in the brain's molecular encoding of stress potentially contributes to the heterogeneous clinical outcomes in response to traumatic experiences. For instance, only a minority of those exposed to trauma will develop post-traumatic stress disorder (PTSD). Risk for PTSD is at least partially heritable, with a growing number of genetic factors identified through GWAS. A major limitation of genetic studies is that they capture only the genetic component of risk, whereas PTSD by definition requires an environmental traumatic exposure. Furthermore, the extent, timing, and type of trauma affects susceptibility. Here, we discuss the molecular mechanisms of PTSD risk together with gene × environment interactions, with a focus on how either might inform genetic screening for individuals at high risk for disease, reveal biological mechanisms that might one day yield novel therapeutics, and impact best clinical practices even today. To close, we discuss the interaction of trauma with sex, gender, and race, with a focus on the implications for treatment. Altogether, we suggest that predicting, preventing, and treating PTSD will require integrating both genotypic and environmental information.
Collapse
Affiliation(s)
- Carina Seah
- Department of Genetics and Genomics and
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anne Elizabeth Sidamon-Eristoff
- Department of Psychiatry, Division of Molecular Psychiatry
- Interdepartmental Neuroscience Program, Wu Tsai Institute, and
- MD-PhD Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Kristen J. Brennand
- Department of Genetics and Genomics and
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Division of Molecular Psychiatry
- Interdepartmental Neuroscience Program, Wu Tsai Institute, and
| |
Collapse
|
2
|
Shahid A, Zahra A, Aslam S, Shamim A, Ali WR, Aslam B, Khan SH, Arshad MI. Appraisal of CRISPR Technology as an Innovative Screening to Therapeutic Toolkit for Genetic Disorders. Mol Biotechnol 2025:10.1007/s12033-025-01374-z. [PMID: 39894889 DOI: 10.1007/s12033-025-01374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
The high frequency of genetic diseases compels the development of refined diagnostic and therapeutic systems. CRISPR is a precise genome editing tool that offers detection of genetic mutation with high sensitivity, specificity and flexibility for point-of-care testing in low resource environment. Advancements in CRISPR ushered new hope for the detection of genetic diseases. This review aims to explore the recent advances in CRISPR for the detection and treatment of genetic disorders. It delves into the advances like next-generation CRISPR diagnostics like nano-biosensors, digitalized CRISPR, and omics-integrated CRISPR technologies to enhance the detection limits and to facilitate the "lab-on-chip" technologies. Additionally, therapeutic potential of CRISPR technologies is reviewed to evaluate the implementation potential of CRISPR technologies for the treatment of hematological diseases, (sickle cell anemia and β-thalassemia), HIV, cancer, cardiovascular diseases, and neurological disorders, etc. Emerging CRISPR therapeutic approaches such as base/epigenetic editing and stem cells for the development of foreseen CRIPSR drugs are explored for the development of point-of-care testing. A combination of predictive models of artificial intelligence and machine learning with growing knowledge of genetic disorders has also been discussed to understand their role in acceleration of genetic detection. Ethical consideration are briefly discussed towards to end of review. This review provides the comprehensive insights into advances in the CRISPR diagnostics/therapeutics which are believed to pave the way for reliable, effective, and low-cost genetic testing.
Collapse
Affiliation(s)
- Ayesha Shahid
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ambreen Zahra
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sabin Aslam
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amen Shamim
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
- Department of Computer Science, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sultan Habibullah Khan
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Arshad
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan.
- Institute of Microbiology, University of Agriculture Faisalabad, Pakistan Academy of Sciences (PAS), Faisalabad, 38000, Pakistan.
- Jiangsu University, Jiangsu, 212013, People's Republic of China.
| |
Collapse
|
3
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2024; 273:39-61. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
4
|
Tordai C, Hathy E, Gyergyák H, Vincze K, Baradits M, Koller J, Póti Á, Jezsó B, Homolya L, Molnár MJ, Nagy L, Szüts D, Apáti Á, Réthelyi JM. Probing the biological consequences of a previously undescribed de novo mutation of ZMYND11 in a schizophrenia patient by CRISPR genome editing and induced pluripotent stem cell based in vitro disease-modeling. Schizophr Res 2024; 273:107-120. [PMID: 38290943 DOI: 10.1016/j.schres.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe neuropsychiatric disorder of complex, poorly understood etiology, associated with both genetic and environmental factors. De novo mutations (DNMs) represent a new source of genetic variation in SCZ, however, in most cases their biological significance remains unclear. We sought to investigate molecular disease pathways connected to DNMs in SCZ by combining human induced pluripotent stem cell (hiPSC) based disease modeling and CRISPR-based genome editing. METHODS We selected a SCZ case-parent trio with the case individual carrying a potentially disease causing 1495C > T nonsense DNM in the zinc finger MYND domain-containing protein 11 (ZMYND11), a gene implicated in biological processes relevant for SCZ. In the patient-derived hiPSC line the mutation was corrected using CRISPR, while monoallelic or biallelic frameshift mutations were introduced into a control hiPSC line. Isogenic cell lines were differentiated into hippocampal neuronal progenitor cells (NPCs) and functionally active dentate gyrus granule cells (DGGCs). Immunofluorescence microscopy and RNA sequencing were used to test for morphological and transcriptomic differences at NPC and DGCC stages. Functionality of neurons was investigated using calcium-imaging and multi-electrode array measurements. RESULTS Morphology in the mutant hippocampal NPCs and neurons was preserved, however, we detected significant transcriptomic and functional alterations. RNA sequencing showed massive upregulation of neuronal differentiation genes, and downregulation of cell adhesion genes. Decreased reactivity to glutamate was demonstrated by calcium-imaging. CONCLUSIONS Our findings lend support to the involvement of glutamatergic dysregulation in the pathogenesis of SCZ. This approach represents a powerful model system for precision psychiatry and pharmacological research.
Collapse
Affiliation(s)
- Csongor Tordai
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary; Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Edit Hathy
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Hella Gyergyák
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary
| | - Katalin Vincze
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary; Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Máté Baradits
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Júlia Koller
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary; Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Ádám Póti
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary
| | - Bálint Jezsó
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary; Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/c, Budapest, Hungary
| | - László Homolya
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Debrecen, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary.
| | - Ágota Apáti
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary.
| | - János M Réthelyi
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary.
| |
Collapse
|
5
|
Zhang H, McCarroll A, Peyton L, Díaz de León-Guerrerro S, Zhang S, Gowda P, Sirkin D, ElAchwah M, Duhe A, Wood WG, Jamison B, Tracy G, Pollak R, Hart RP, Pato CN, Mulle JG, Sanders AR, Pang ZP, Duan J. Scaled and efficient derivation of loss-of-function alleles in risk genes for neurodevelopmental and psychiatric disorders in human iPSCs. Stem Cell Reports 2024; 19:1489-1504. [PMID: 39270650 PMCID: PMC11561461 DOI: 10.1016/j.stemcr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/15/2024] Open
Abstract
Translating genetic findings for neurodevelopmental and psychiatric disorders (NPDs) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop codons (iSTOP) that lead to mRNA nonsense-mediated decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 genes. Using RNA sequencing (RNA-seq), we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Despite high editing efficiency, three schizophrenia risk genes (SETD1A, TRIO, and CUL1) only had heterozygous LoF alleles, suggesting their essential roles for cell growth. We found that CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.
Collapse
Affiliation(s)
- Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Ada McCarroll
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Lilia Peyton
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Sol Díaz de León-Guerrerro
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Prarthana Gowda
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - David Sirkin
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Mahmoud ElAchwah
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alexandra Duhe
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Whitney G Wood
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Brandon Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Gregory Tracy
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Rebecca Pollak
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Carlos N Pato
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jennifer G Mulle
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Birnbaum R, Weinberger DR. The Genesis of Schizophrenia: An Origin Story. Am J Psychiatry 2024; 181:482-492. [PMID: 38822584 DOI: 10.1176/appi.ajp.20240305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Schizophrenia is routinely referred to as a neurodevelopmental disorder, but the role of brain development in a disorder typically diagnosed during early adult life is enigmatic. The authors revisit the neurodevelopmental model of schizophrenia with genomic insights from the most recent schizophrenia clinical genetic association studies, transcriptomic and epigenomic analyses from human postmortem brain studies, and analyses from cellular models that recapitulate neurodevelopment. Emerging insights into schizophrenia genetic risk continue to converge on brain development, particularly stages of early brain development, that may be perturbed to deviate from a typical, normative course, resulting in schizophrenia clinical symptomatology. As the authors explicate, schizophrenia genetic risk is likely dynamic and context dependent, with effects of genetic risk varying spatiotemporally, across the neurodevelopmental continuum. Optimizing therapeutic strategies for the heterogeneous collective of individuals with schizophrenia may likely be guided by leveraging markers of genetic risk and derivative functional insights, well before the emergence of psychosis. Ultimately, rather than a focus on therapeutic intervention during adolescence or adulthood, principles of prediction and prophylaxis in the pre- and perinatal and neonatal stages may best comport with the biology of schizophrenia to address the early-stage perturbations that alter the normative neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Rebecca Birnbaum
- Departments of Psychiatry, Genetics, and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (Birnbaum); Lieber Institute of Brain Development, Maltz Research Laboratory, and Departments of Psychiatry, Neurology, Neuroscience, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore (Weinberger)
| | - Daniel R Weinberger
- Departments of Psychiatry, Genetics, and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (Birnbaum); Lieber Institute of Brain Development, Maltz Research Laboratory, and Departments of Psychiatry, Neurology, Neuroscience, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore (Weinberger)
| |
Collapse
|
7
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
8
|
Zhang H, Peyton L, McCarroll A, de León Guerrerro SD, Zhang S, Gowda P, Sirkin D, El Achwah M, Duhe A, Wood WG, Jamison B, Tracy G, Pollak R, Hart RP, Pato CN, Mulle JG, Sanders AR, Pang ZP, Duan J. Scaled and Efficient Derivation of Loss of Function Alleles in Risk Genes for Neurodevelopmental and Psychiatric Disorders in Human iPSC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585542. [PMID: 38562852 PMCID: PMC10983959 DOI: 10.1101/2024.03.18.585542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Translating genetic findings for neurodevelopmental and psychiatric disorders (NPD) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, here we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop-codons (iSTOP) that lead to mRNA nonsense-mediated-decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 NPD genes. Using RNAseq, we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Interestingly, for three schizophrenia risk genes (SETD1A, TRIO, CUL1), despite the high efficiency of base editing, we only obtained heterozygous LoF alleles, suggesting their essential roles for cell growth. We replicated the reported neural phenotypes of SHANK3-haploinsufficiency and found CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.
Collapse
Affiliation(s)
- Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Lilia Peyton
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Ada McCarroll
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Sol Díaz de León Guerrerro
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL
| | - Prarthana Gowda
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - David Sirkin
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Mahmoud El Achwah
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Alexandra Duhe
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Whitney G Wood
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Brandon Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Gregory Tracy
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Rebecca Pollak
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University
| | - Carlos N Pato
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Jennifer G Mulle
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL
| |
Collapse
|
9
|
Sheridan SD, Horng JE, Perlis RH. Patient-Derived In Vitro Models of Microglial Function and Synaptic Engulfment in Schizophrenia. Biol Psychiatry 2022; 92:470-479. [PMID: 35232567 PMCID: PMC10039432 DOI: 10.1016/j.biopsych.2022.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023]
Abstract
Multiple lines of evidence implicate dysregulated microglia-mediated synaptic pruning in the pathophysiology of schizophrenia. In vitro human cellular studies represent a promising means of pursuing this hypothesis, complementing efforts with animal models and postmortem human data while addressing their limitations. The challenges in culturing homogeneous populations of cells derived from postmortem or surgical biopsy brain material from patients, and their limited availability, has led to a focus on differentiation of induced pluripotent stem cells. These methods too have limitations, in that they disrupt the epigenome and can demonstrate line-to-line variability due in part to extended time in culture, partial reprogramming, and/or residual epigenetic memory from the cell source, yielding large technical artifacts. Yet another strategy uses direct transdifferentiation of peripheral mononuclear blood cells, or umbilical cord blood cells, to microglia-like cells. Any of these approaches can be paired with patient-derived synaptosomes from differentiated neurons as a simpler alternative to co-culture. Patient-derived microglia models may facilitate identification of novel modulators of synaptic pruning and identification of biomarkers that may allow more targeted early interventions.
Collapse
Affiliation(s)
- Steven D Sheridan
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Joy E Horng
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Roy H Perlis
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
Onitsuka T, Hirano Y, Nakazawa T, Ichihashi K, Miura K, Inada K, Mitoma R, Yasui-Furukori N, Hashimoto R. Toward recovery in schizophrenia: Current concepts, findings, and future research directions. Psychiatry Clin Neurosci 2022; 76:282-291. [PMID: 35235256 DOI: 10.1111/pcn.13342] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Schizophrenia was initially defined as "dementia praecox" by E. Kraepelin, which implies progressive deterioration. However, recent studies have revealed that early effective intervention may lead to social and functional recovery in schizophrenia. In this review, we provide an overview of current concepts in schizophrenia and pathophysiological hypotheses. In addition, we present recent findings from clinical and basic research on schizophrenia. Recent neuroimaging and neurophysiological studies have consistently revealed specific biological differences in the structure and function of the brain in those with schizophrenia. From a basic research perspective, to determine the essential pathophysiology underlying schizophrenia, it is crucial that findings from all lines of inquiry-induced pluripotent stem cell (iPSC)-derived neural cells from patients, murine models expressing genetic mutations identified in patients, and patient clinical data-be integrated to contextualize the analysis results. However, the findings remain insufficient to serve as a diagnostic tool or a biomarker for predicting schizophrenia-related outcomes. Collaborations to conduct clinical research based on the patients' and their families' values are just beginning, and further development is expected.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kayo Ichihashi
- Department of Neuropsychiatry, The University of Tokyo Hospital, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ken Inada
- Department of Psychiatry, Tokyo Women's Medical University, Tokyo, Japan.,Department of Psychiatry, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ryo Mitoma
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Yasui-Furukori
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
11
|
Atefimanash P, Pourhamzeh M, Susanabadi A, Arabi M, Jamali-Raeufy N, Mehrabi S. Hippocampal chloride transporter KCC2 contributes to excitatory GABA dysregulation in the developmental rat model of schizophrenia. J Chem Neuroanat 2021; 118:102040. [PMID: 34695562 DOI: 10.1016/j.jchemneu.2021.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Recent studies have revealed an altered expression of NKCC1 and KCC2 in prefrontal cortex (PFC) and hippocampus of schizophrenic patients. Despite extensive considerations, the alteration of NKCC1 and KCC2 co-transporters at different stages of development has not been fully studied. Therefore, we evaluated the expression of these transporters in PFC and hippocampus at time points of four, eight, and twelve weeks in post-weaning social isolation rearing rat model. For this purpose, 23-25 days-old rats were classified into social- or isolation-reared groups. The levels of NKCC1 and KCC2 mRNA expression were evaluated at hippocampus or PFC regions at the time-points of four, eight, and twelve weeks following housing. Post-weaning isolation rearing decreased the hippocampal KCC2 mRNA expression level, but does not affect the NKCC1 mRNA expression. However, no significant difference was observed in the PFC mRNA levels of NKCC1 and KCC2 in the isolation-reared group compared to the socially-reared group during the course of modeling. Further, we assessed the therapeutic effect of selective NKCC1 inhibitor bumetanide (10 mg/kg), on improvement of prepulse inhibition (PPI) test on twelve weeks isolation-reared rats. Intraperitoneal administration of bumetanide (10 mg/kg) did not exert beneficial effects on PPI deficit. Our findings show that isolation rearing reduces hippocampal KCC2 expression level and may underlie hippocampal GABA excitatory. In addition, 10 mg/kg bumetanide is not effective in improving the reduced PPI of twelve weeks isolation-reared rats. Collectively, our findings show that hippocampal chloride transporter KCC2 contributes to excitatory GABA dysregulation in the developmental rat model of schizophrenia.
Collapse
Affiliation(s)
- Pezhman Atefimanash
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Susanabadi
- Department of Anesthesia and pain medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Nida Jamali-Raeufy
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
12
|
Yamamoto K, Kuriu T, Matsumura K, Nagayasu K, Tsurusaki Y, Miyake N, Yamamori H, Yasuda Y, Fujimoto M, Fujiwara M, Baba M, Kitagawa K, Takemoto T, Gotoda-Nishimura N, Takada T, Seiriki K, Hayata-Takano A, Kasai A, Ago Y, Kida S, Takuma K, Ono F, Matsumoto N, Hashimoto R, Hashimoto H, Nakazawa T. Multiple alterations in glutamatergic transmission and dopamine D2 receptor splicing in induced pluripotent stem cell-derived neurons from patients with familial schizophrenia. Transl Psychiatry 2021; 11:548. [PMID: 34697299 PMCID: PMC8547217 DOI: 10.1038/s41398-021-01676-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing body of evidence suggests that impaired synapse development and function are associated with schizophrenia; however, the underlying molecular pathophysiological mechanism of the disease remains largely unclear. We conducted a family-based study combined with molecular and cellular analysis using induced pluripotent stem cell (iPSC) technology. We generated iPSCs from patients with familial schizophrenia, differentiated these cells into neurons, and investigated the molecular and cellular phenotypes of the patient's neurons. We identified multiple altered synaptic functions, including increased glutamatergic synaptic transmission, higher synaptic density, and altered splicing of dopamine D2 receptor mRNA in iPSC-derived neurons from patients. We also identified patients' specific genetic mutations using whole-exome sequencing. Our findings support the notion that altered synaptic function may underlie the molecular and cellular pathophysiology of schizophrenia, and that multiple genetic factors cooperatively contribute to the development of schizophrenia.
Collapse
Affiliation(s)
- Kana Yamamoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Toshihiko Kuriu
- Osaka Medical and Pharmaceutical University, Research and Development Center, Osaka, 569-8686, Japan
| | - Kensuke Matsumura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kazuki Nagayasu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
- Faculty of Nutritional Science, Sagami Women's University, Kanagawa, 252-0383, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Japan Community Health Care Organization Osaka Hospital, Osaka, 553-0003, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan
- Medical Corporation Foster, Osaka, 531-0075, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Mikiya Fujiwara
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Masayuki Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kohei Kitagawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Tomoya Takemoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Nanaka Gotoda-Nishimura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Tomohiro Takada
- Laboratory of Molecular Biology, Department of Bioscience, Graduate School of Life Sciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
- Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Osaka, 565-0871, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami‑ku, Hiroshima, 734‑8553, Japan
| | - Satoshi Kida
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuhiro Takuma
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, 565-0871, Japan
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, 565-0871, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, 565-0871, Japan.
- Division of Bioscience, Institute for Datability Science, Osaka University, Osaka, 565-0871, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, 565-0871, Japan.
- Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
- Laboratory of Molecular Biology, Department of Bioscience, Graduate School of Life Sciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| |
Collapse
|
13
|
Wilson ES, Litwa K. Synaptic Hyaluronan Synthesis and CD44-Mediated Signaling Coordinate Neural Circuit Development. Cells 2021; 10:2574. [PMID: 34685554 PMCID: PMC8533746 DOI: 10.3390/cells10102574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
The hyaluronan-based extracellular matrix is expressed throughout nervous system development and is well-known for the formation of perineuronal nets around inhibitory interneurons. Since perineuronal nets form postnatally, the role of hyaluronan in the initial formation of neural circuits remains unclear. Neural circuits emerge from the coordinated electrochemical signaling of excitatory and inhibitory synapses. Hyaluronan localizes to the synaptic cleft of developing excitatory synapses in both human cortical spheroids and the neonatal mouse brain and is diminished in the adult mouse brain. Given this developmental-specific synaptic localization, we sought to determine the mechanisms that regulate hyaluronan synthesis and signaling during synapse formation. We demonstrate that hyaluronan synthase-2, HAS2, is sufficient to increase hyaluronan levels in developing neural circuits of human cortical spheroids. This increased hyaluronan production reduces excitatory synaptogenesis, promotes inhibitory synaptogenesis, and suppresses action potential formation. The hyaluronan receptor, CD44, promotes hyaluronan retention and suppresses excitatory synaptogenesis through regulation of RhoGTPase signaling. Our results reveal mechanisms of hyaluronan synthesis, retention, and signaling in developing neural circuits, shedding light on how disease-associated hyaluronan alterations can contribute to synaptic defects.
Collapse
Affiliation(s)
| | - Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
14
|
Nakazawa T. Modeling schizophrenia with iPS cell technology and disease mouse models. Neurosci Res 2021; 175:46-52. [PMID: 34411680 DOI: 10.1016/j.neures.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology, which enables the direct analysis of neuronal cells with the same genetic background as patients, has recently garnered significant attention in schizophrenia research. This technology is important because it enables a comprehensive interpretation using mice and human clinical research and cross-species verification. Here I review recent advances in modeling schizophrenia using iPSC technology, alongside the utility of disease mouse models.
Collapse
Affiliation(s)
- Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| |
Collapse
|