1
|
Asokan MM, Falkner AL. Hormonal regulation of behavioral and emotional persistence: Novel insights from a systems-level approach to neuroendocrinology. Neurobiol Learn Mem 2025; 220:108064. [PMID: 40436262 DOI: 10.1016/j.nlm.2025.108064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/07/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025]
Abstract
Gonadal sex steroid hormones regulate internal states, social drive, perception of external cues, and learning and memory. Fluctuating hormones influence mood and emotional states, enabling flexibility in instinctive behaviors and cognitive decisions. Conversely, elevated hormone levels help sustain emotional states and behavioral choices, ensuring the precise execution of costly social behaviors within optimal time windows to maximize reproductive success. While decades of work have shed light on the cellular and molecular mechanisms by which sex hormones alter neural excitability and circuit architecture, recent work has begun to tie many of these changes to principles of computation using the tools of systems neuroscience. Here, we will outline the mechanisms by which sex steroid hormones alter neural functioning at the molecular and cellular level and highlight recent work that points towards changes in specific computational functions, including the generation and maintenance of neural and behavioral persistence.
Collapse
|
2
|
Meulenbeek K, Fragkaki I, Spagnuolo F, Frankenberger L, Cima M. The interplay between cortisol and oxytocin in aggressive adolescents: The role of trauma. J Trauma Stress 2025. [PMID: 40329466 DOI: 10.1002/jts.23161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 05/08/2025]
Abstract
The neuroendocrine profile of aggressive adolescents shows inconsistencies, potentially influenced by trauma exposure. Specifically, the hypothalamic-pituitary-adrenal (HPA)-oxytocinergic circuitry may vary among aggressive youth based on past trauma exposure, with a positive interplay between cortisol and oxytocin in those with higher levels of trauma, as a result of the simultaneous hormone release to cope with trauma-related stress. To explore this hypothesis, this study collected saliva samples at three time points (morning, afternoon, and evening) over 2 consecutive days from male adolescents (N = 57, Mage = 17.95 years, SD = 2.44) in residential youth care facilities. In addition, the Childhood Trauma Questionnaire was administered to assess the presence and frequency of trauma exposure. A linear mixed-effects model showed a significant interaction effect, B = 0.06, p = .015, ΔR2 = .013, with simple-slope analysis showing a positive association between cortisol and oxytocin in residential youth with higher levels of childhood trauma exposure, B = 0.08, p = .007, but not those with lower levels of trauma exposure, consistent with our predictions. These findings suggest a possible compensatory mechanism in response to trauma and emphasize the need to consider trauma exposure when further investigating the neuroendocrine profile of aggression.
Collapse
Affiliation(s)
- Kalista Meulenbeek
- Department Developmental Psychopathology, Radboud University, Nijmegen, The Netherlands
| | - Iro Fragkaki
- Department Developmental Psychopathology, Radboud University, Nijmegen, The Netherlands
| | - Flavia Spagnuolo
- Department Developmental Psychopathology, Radboud University, Nijmegen, The Netherlands
| | - Luca Frankenberger
- Department Developmental Psychopathology, Radboud University, Nijmegen, The Netherlands
| | - Maaike Cima
- Department Developmental Psychopathology, Radboud University, Nijmegen, The Netherlands
- Department Youth Care, Pactum Youth Care Institute, Zetten, The Netherlands
- Department Youth Care, Via Jeugd, Youth Care Institute, Cadier en Keer, The Netherlands
- Foundation Ventio, Prevention of Crime, Rijckholt, The Netherlands
| |
Collapse
|
3
|
Iravedra-Garcia JM, Guthman EM, Cuturela L, Ocasio-Arce EJ, Pillow JW, Falkner AL. Aggression experience and observation promote shared behavioral and neural changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.630396. [PMID: 39763843 PMCID: PMC11703258 DOI: 10.1101/2024.12.26.630396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The ability to observe the social behavior of others and use observed information to bias future action is a fundamental building block of social cognition1,2. A foundational question is whether social observation and experience engage common circuit mechanisms that enable behavioral change. While classic studies on social learning have shown that aggressive behaviors can be learned through observation3, it remains unclear whether aggression observation promotes persistent neural changes that generalize to new contexts. Here, to directly compare the effects of aggression experience and observation at brain-wide scale, we develop a strategy to perform large-scale cell-type specific recordings across subcortical networks for social behavior control and learning. We record longitudinally while animals "train" through direct experience or observation, then probe shared differences in behavior and neural activity in a novel "hard" aggression context. Using supervised and unsupervised methods for behavioral quantification, we detect unique signatures of a shared behavioral strategy not present in animals with no training. During observation, we find widespread activation that mimics experience in networks for behavior generation, with critical differences in signals associated with reward and threat learning. After observation, we observe that changes persist into the novel aggression context, with increased similarity in the neural dynamics between experience and observation groups. Network-level modeling reveals persistent shared changes to a core aggression network, with widespread decoupling of inhibition from a key hypothalamic output region. This demonstrates that "experience-like" activity during observation can recruit a shared plasticity mechanism that biases behavior toward adaptive defensive strategies in new contexts.
Collapse
Affiliation(s)
| | | | - Lenca Cuturela
- Princeton Neuroscience Institute, Princeton, NJ 08540, U.S.A
- Center for Theoretical Neuroscience, Columbia University, New York, NY, 10027
| | | | | | | |
Collapse
|
4
|
Singh R, Gobrogge K. Aggression Unleashed: Neural Circuits from Scent to Brain. Brain Sci 2024; 14:794. [PMID: 39199486 PMCID: PMC11352925 DOI: 10.3390/brainsci14080794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Aggression is a fundamental behavior with essential roles in dominance assertion, resource acquisition, and self-defense across the animal kingdom. However, dysregulation of the aggression circuitry can have severe consequences in humans, leading to economic, emotional, and societal burdens. Previous inconsistencies in aggression research have been due to limitations in techniques for studying these neurons at a high spatial resolution, resulting in an incomplete understanding of the neural mechanisms underlying aggression. Recent advancements in optogenetics, pharmacogenetics, single-cell RNA sequencing, and in vivo electrophysiology have provided new insights into this complex circuitry. This review aims to explore the aggression-provoking stimuli and their detection in rodents, particularly through the olfactory systems. Additionally, we will examine the core regions associated with aggression, their interactions, and their connection with the prefrontal cortex. We will also discuss the significance of top-down cognitive control systems in regulating atypical expressions of aggressive behavior. While the focus will primarily be on rodent circuitry, we will briefly touch upon the modulation of aggression in humans through the prefrontal cortex and discuss emerging therapeutic interventions that may benefit individuals with aggression disorders. This comprehensive understanding of the neural substrates of aggression will pave the way for the development of novel therapeutic strategies and clinical interventions. This approach contrasts with the broader perspective on neural mechanisms of aggression across species, aiming for a more focused analysis of specific pathways and their implications for therapeutic interventions.
Collapse
Affiliation(s)
- Rhea Singh
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Kyle Gobrogge
- Undergraduate Program in Neuroscience, Boston University, Boston, MA 02215, USA;
| |
Collapse
|
5
|
Aspesi D, Cornil CA. Role of neuroestrogens in the regulation of social behaviors - From social recognition to mating. Neurosci Biobehav Rev 2024; 161:105679. [PMID: 38642866 DOI: 10.1016/j.neubiorev.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
In this mini-review, we summarize the brain distribution of aromatase, the enzyme catalyzing the synthesis of estrogens from androgens, and the mechanisms responsible for regulating estrogen production within the brain. Understanding this local synthesis of estrogens by neurons is pivotal as it profoundly influences various facets of social behavior. Neuroestrogen action spans from the initial processing of socially pertinent sensory cues to integrating this information with an individual's internal state, ultimately resulting in the manifestation of either pro-affiliative or - aggressive behaviors. We focus here in particular on aggressive and sexual behavior as the result of correct individual recognition of intruders and potential mates. The data summarized in this review clearly point out the crucial role of locally synthesized estrogens in facilitating rapid adaptation to the social environment in rodents and birds of both sexes. These observations not only shed light on the evolutionary significance but also indicate the potential implications of these findings in the realm of human health, suggesting a compelling avenue for further investigation.
Collapse
Affiliation(s)
- Dario Aspesi
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
6
|
Kalaycı FM, Doruk ÖG, Erbaş İM, İnce OT, Tan MN, Aydın A, Abacı A, Böber E, Demir K. Salivary Sex Steroid Levels in Infants and the Relation with Infantile Colic. J Clin Res Pediatr Endocrinol 2024; 16:185-191. [PMID: 38347685 PMCID: PMC11590717 DOI: 10.4274/jcrpe.galenos.2024.2023-11-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/30/2024] [Indexed: 06/04/2024] Open
Abstract
Objective The hypothalamic-pituitary-gonadal axis is active during minipuberty, the timing of which coincides with infantile colic. To the best of our knowledge, the relationship between these entities has not been previously investigated. Methods Saliva samples were collected from 15- to 60-day-old term infants (n=139) between 9 am and 5 pm. Group 1 included infants with infantile colic (n=68, 54.4% female) while the remaining healthy infants constituted Group 2 (n=71, 47.9% female). Salivary levels of estradiol (Esal) in females and testosterone (Tsal) in males were measured by ELISA in duplicate. Results The median (25th-75th centile) age and birth week for all infants were 33 (29-43) days and 39 (38.1-40) weeks, respectively. Levels of Tsal in males [Group 1, 73.35 (59.94-117.82) pg/mL vs Group 2, 77.66 (56.49-110.08) pg/mL, p=0.956] and Esal in females [Group 1, 3.91 (2.76-5.31) pg/mL vs Group 2, 4.03 (1.63-12.1) pg/mL, p=0.683] were similar. However, in subjects with infantile colic (Group 1), Esal and body mass index (BMI) standard deviation scores of females were slightly correlated (Group 1, rs= 0.393, p=0.016 vs. Group 2, rs= 0.308, p=0.076) and there was a significant correlation between the sampling time and Tsal in males (Group 1, rs= 0.469, p=0.009 vs. Group 2, rs= -0.005, p=0.976). Conclusion Random salivary sex steroid levels were similar in infants with and without infantile colic. However, in subjects with infantile colic, Esal levels in females were positively correlated with BMI and Tsal levels were higher later in the day among males. Thus, sex steroid production may be altered during minipuberty in subjects with infantile colic.
Collapse
Affiliation(s)
- Fulya Mete Kalaycı
- Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, İzmir, Turkey
| | - Özlem Gürsoy Doruk
- Dokuz Eylül University Faculty of Medicine, Department of Biochemistry, İzmir, Turkey
| | - İbrahim Mert Erbaş
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Osman Tolga İnce
- Dokuz Eylül University Faculty of Medicine, Department of Social Pediatrics, İzmir, Turkey
| | - Makbule Neslişah Tan
- Dokuz Eylül University Faculty of Medicine, Department of Family Medicine, İzmir, Turkey
| | - Adem Aydın
- Dokuz Eylül University Faculty of Medicine, Department of Social Pediatrics, İzmir, Turkey
| | - Ayhan Abacı
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Ece Böber
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Korcan Demir
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| |
Collapse
|
7
|
Minakuchi T, Guthman EM, Acharya P, Hinson J, Fleming W, Witten IB, Oline SN, Falkner AL. Independent inhibitory control mechanisms for aggressive motivation and action. Nat Neurosci 2024; 27:702-715. [PMID: 38347201 DOI: 10.1038/s41593-023-01563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/19/2023] [Indexed: 04/10/2024]
Abstract
Social behaviors often consist of a motivational phase followed by action. Here we show that neurons in the ventromedial hypothalamus ventrolateral area (VMHvl) of mice encode the temporal sequence of aggressive motivation to action. The VMHvl receives local inhibitory input (VMHvl shell) and long-range input from the medial preoptic area (MPO) with functional coupling to neurons with specific temporal profiles. Encoding models reveal that during aggression, VMHvl shellvgat+ activity peaks at the start of an attack, whereas activity from the MPO-VMHvlvgat+ input peaks at specific interaction endpoints. Activation of the MPO-VMHvlvgat+ input promotes and prolongs a low motivation state, whereas activation of VMHvl shellvgat+ results in action-related deficits, acutely terminating attack. Moreover, stimulation of MPO-VMHvlvgat+ input is positively valenced and anxiolytic. Together, these data demonstrate how distinct inhibitory inputs to the hypothalamus can independently gate the motivational and action phases of aggression through a single locus of control.
Collapse
Affiliation(s)
| | | | | | - Justin Hinson
- Princeton Neuroscience Institute, Princeton, NJ, USA
| | | | | | | | | |
Collapse
|
8
|
Potegal M. How it ends: A review of behavioral and psychological phenomena, physiological processes and neural circuits in the termination of aggression in other animals and anger in people. Behav Brain Res 2024; 456:114676. [PMID: 37739229 DOI: 10.1016/j.bbr.2023.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/26/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
More is known about aggression initiation and persistence in other animals, and anger in people, than about their cessation. This review summarizes knowledge of relevant factors in aggression, mostly in vertebrates, and anger termination in people. The latency, probability and intensity of offensive aggression in mice is controlled by activity in a neuronal subpopulation in ventromedial hypothalamus [VMH]. This activity instantiates an aggressive state termed angriffsbereitschaft ["attack-readiness"]. Fighting in many species is broken into bouts with interbout breaks due to fatigue and/or signals from dorsal raphe to VMH. Eventually, losers decide durations and outcomes of fighting by transitioning to submission or flight. Factors reducing angriffsbereitschaft and triggering these defeat behaviors could include metabolic costs, e.g., lactate accumulation and glucose depletion detected by the hypothalamus, central fatigue perhaps sensed by the Salience Network [insula and anterior cingulate gyrus] and pain of injuries, the latter insufficiently blunted by opioid and non-opioid stress analgesia and transduced by anterior VMH neurons. Winners' angriffsbereitschaft continue for awhile, as indicated by post-victory attacks and, perhaps, triumph displays of some species, including humans. In longer term situations, sensory and/or response habituation of aggression may explain the "Dear enemy" tolerance of competitive neighbors. Prolonged satiation of predatory behavior could involve habenula-regulated reduction of dopaminergic reward in nucleus accumbens. Termination of human anger involves at least three processes, metaphorically termed decay, quenching and catharsis. Hypothesized neural mechanisms include anger diminution by negative feedback from accumbens to anterior cingulate and/or activity in the Salience Network that controls anger's "accumulation/offset" phase.
Collapse
Affiliation(s)
- M Potegal
- University of Minnesota, United States.
| |
Collapse
|
9
|
Smiley KO, Munley KM, Aghi K, Lipshutz SE, Patton TM, Pradhan DS, Solomon-Lane TK, Sun SED. Sex diversity in the 21st century: Concepts, frameworks, and approaches for the future of neuroendocrinology. Horm Behav 2024; 157:105445. [PMID: 37979209 PMCID: PMC10842816 DOI: 10.1016/j.yhbeh.2023.105445] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature. This is due, in part, to the fact that sex exists across many levels of biological analysis, including genetic, molecular, cellular, morphological, behavioral, and population levels. Furthermore, the biological mechanisms governing sex are embedded in complex networks that dynamically interact with other systems. To produce the most accurate and scientifically rigorous work examining sex in neuroendocrinology and to capture the full range of sex variability and diversity present in animal systems, we must critically assess the frameworks, experimental designs, and analytical methods used in our research. In this perspective piece, we first propose a new conceptual framework to guide the integrative study of sex. Then, we provide practical guidance on research approaches for studying sex-associated variables, including factors to consider in study design, selection of model organisms, experimental methodologies, and statistical analyses. We invite fellow scientists to conscientiously apply these modernized approaches to advance our biological understanding of sex and to encourage academically and socially responsible outcomes of our work. By expanding our conceptual frameworks and methodological approaches to the study of sex, we will gain insight into the unique ways that sex exists across levels of biological organization to produce the vast array of variability and diversity observed in nature.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 639 North Pleasant Street, Morrill IVN Neuroscience, Amherst, MA 01003, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, 3695 Cullen Boulevard, Houston, TX 77204, USA.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
| | - Sara E Lipshutz
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| | - Tessa M Patton
- Bioinformatics Program, Loyola University Chicago, 1032 West Sheridan Road, LSB 317, Chicago, IL 60660, USA.
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209, USA.
| | - Tessa K Solomon-Lane
- Scripps, Pitzer, Claremont McKenna Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA.
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
10
|
Potegal M, Nordman JC. Non-angry aggressive arousal and angriffsberietschaft: A narrative review of the phenomenology and physiology of proactive/offensive aggression motivation and escalation in people and other animals. Neurosci Biobehav Rev 2023; 147:105110. [PMID: 36822384 DOI: 10.1016/j.neubiorev.2023.105110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Human aggression typologies largely correspond with those for other animals. While there may be no non-human equivalent of angry reactive aggression, we propose that human proactive aggression is similar to offense in other animals' dominance contests for territory or social status. Like predation/hunting, but unlike defense, offense and proactive aggression are positively reinforcing, involving dopamine release in accumbens. The drive these motivational states provide must suffice to overcome fear associated with initiating risky fights. We term the neural activity motivating proactive aggression "non-angry aggressive arousal", but use "angriffsberietschaft" for offense motivation in other animals to acknowledge possible differences. Temporal variation in angriffsberietschaft partitions fights into bouts; engendering reduced anti-predator vigilance, redirected aggression and motivational over-ride. Increased aggressive arousal drives threat-to-attack transitions, as in verbal-to-physical escalation and beyond that, into hyper-aggression. Proactive aggression and offense involve related neural activity states. Cingulate, insular and prefrontal cortices energize/modulate aggression through a subcortical core containing subnuclei for each aggression type. These proposals will deepen understanding of aggression across taxa, guiding prevention/intervention for human violence.
Collapse
Affiliation(s)
| | - Jacob C Nordman
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| |
Collapse
|
11
|
The Predictive Value of Monocyte/High-Density Lipoprotein Ratio (MHR) and Positive Symptom Scores for Aggression in Patients with Schizophrenia. Medicina (B Aires) 2023; 59:medicina59030503. [PMID: 36984504 PMCID: PMC10055014 DOI: 10.3390/medicina59030503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Background and Objectives: Schizophrenia with aggression often has an inflammatory abnormality. The monocyte/high-density lipoprotein ratio (MHR), neutrophil/high-density lipoprotein ratio (NHR), platelet/high-density lipoprotein ratio (PHR) and lymphocyte/high-density lipoprotein ratio (LHR) have lately been examined as novel markers for the inflammatory response. The objective of this study was to assess the relationship between these new inflammatory biomarkers and aggression in schizophrenia patients. Materials and Methods: We enrolled 214 schizophrenia inpatients in our cross-sectional analysis. They were divided into the aggressive group (n = 94) and the non-aggressive group (n = 120) according to the Modified Overt Aggression Scale (MOAS). The severity of schizophrenia was assessed using the Positive and Negative Syndrome Scale (PANSS). The numbers of platelets (PLT), neutrophils (NEU), lymphocytes (LYM), monocytes (MON) and the high-density lipoprotein (HDL) content from subjects were recorded. The NHR, PHR, MHR and LHR were calculated. We analyzed the differences between those indexes in these two groups, and further searched for the correlation between inflammatory markers and aggression. Results: Patients with aggression had higher positive symptom scores (p = 0.002). The values of PLT, MON, MHR and PHR in the aggressive group were considerably higher (p < 0.05). The NHR (r = 0.289, p < 0.01), LHR (r = 0.213, p < 0.05) and MHR (r = 0.238, p < 0.05) values of aggressive schizophrenia patients were positively correlated with the total weighted scores of the MOAS. A higher MHR (β = 1.529, OR = 4.616, p = 0.026) and positive symptom scores (β = 0.071, OR = 1.047, p = 0.007) were significant predictors of aggression in schizophrenia patients. Conclusions: The MHR and the positive symptom scores may be predictors of aggressive behavior in schizophrenia patients. The MHR, a cheap and simple test, may be useful as a clinical tool for risk stratification, and it may direct doctors’ prevention and treatment plans in the course of ordinary clinical care.
Collapse
|
12
|
Aghi K, Goetz TG, Pfau DR, Sun SED, Roepke TA, Guthman EM. Centering the Needs of Transgender, Nonbinary, and Gender-Diverse Populations in Neuroendocrine Models of Gender-Affirming Hormone Therapy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1268-1279. [PMID: 35863692 PMCID: PMC10472479 DOI: 10.1016/j.bpsc.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Most studies attempting to address the health care needs of the millions of transgender, nonbinary, and/or gender-diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations. Research into the effects of exogenous hormones such as estradiol, testosterone, and progesterone has a direct translational benefit for TNG individuals on gender-affirming hormone therapies (GAHTs). Despite this potential, endocrinological health care for TNG individuals remains largely unimproved. Here, we outline important areas of translational research that could address the unique health care needs of TNG individuals on GAHT. We highlight key biomedical questions regarding GAHT that can be investigated using animal models. We discuss how contemporary research fails to address the needs of GAHT users and identify equitable practices for cisgender scientists engaging with this work. We conclude that if necessary and important steps are taken to address these issues, translational research on GAHTs will greatly benefit the health care outcomes of TNG people.
Collapse
Affiliation(s)
- Krisha Aghi
- Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Teddy G Goetz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel R Pfau
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Center for Applied Transgender Studies, Chicago, Illinois
| | - Troy A Roepke
- Department of Animal Sciences, School of Biological and Environmental Sciences, Rutgers University, New Brunswick
| | - Eartha Mae Guthman
- Center for Applied Transgender Studies, Chicago, Illinois; Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey.
| |
Collapse
|