1
|
Zhang Y, Zhuang H, Ren X, Zhou P. Implications of mechanosensitive ion channels in the pathogenesis of osteoarthritis: a comprehensive review. Front Cell Dev Biol 2025; 13:1549812. [PMID: 40376614 PMCID: PMC12078208 DOI: 10.3389/fcell.2025.1549812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
Osteoarthritis (OA) is the predominant cause of joint pain and limited mobility in older people, and its prevalence is increasing as the population ages. Given the lack of effective therapeutic interventions, the disability rate associated with OA is a staggering 53%, which significantly affects the wellbeing of those affected and represents a significant social and family financial burden. Consequently, OA has emerged as a pressing social and public health concern globally. Various forms of mechanical strain, such as dynamic compression, fluid shear, tissue shear, and hydrostatic pressure, serve as crucial physical stimuli perceived by chondrocytes. Recent studies indicate that aberrant mechanical loading represents a fundamental risk factor for OA. Upon exposure to mechanical loading, chondrocytes translate mechanical cues into chemical signals primarily via mechanosensitive ion channels, resulting in alterations in cartilage metabolism. Numerous studies have demonstrated the significance of mechanosensitive ion channels in the pathogenesis of OA, suggesting that therapeutic interventions targeting these channels on chondrocytes may offer potential benefits.
Collapse
Affiliation(s)
| | | | | | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Infield D, Schene ME, Galpin JD, Ahern CA. Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology. Chem Rev 2024; 124:11523-11543. [PMID: 39207057 PMCID: PMC11503617 DOI: 10.1021/acs.chemrev.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.
Collapse
Affiliation(s)
- Daniel
T. Infield
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Miranda E. Schene
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jason D. Galpin
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christopher A. Ahern
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
3
|
Hamed YMF, Ghosh B, Marshall KL. PIEZO ion channels: force sensors of the interoceptive nervous system. J Physiol 2024; 602:4777-4788. [PMID: 38456626 PMCID: PMC11845038 DOI: 10.1113/jp284077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Many organs are designed to move: the heart pumps each second, the gastrointestinal tract squeezes and churns to digest food, and we contract and relax skeletal muscles to move our bodies. Sensory neurons of the peripheral nervous system detect signals from bodily tissues, including the forces generated by these movements, to control physiology. The processing of these internal signals is called interoception, but this is a broad term that includes a wide variety of both chemical and mechanical sensory processes. Mechanical senses are understudied, but rapid progress has been made in the last decade, thanks in part to the discovery of the mechanosensory PIEZO ion channels (Coste et al., 2010). The role of these mechanosensors within the interoceptive nervous system is the focus of this review. In defining the transduction molecules that govern mechanical interoception, we will have a better grasp of how these signals drive physiology.
Collapse
Affiliation(s)
- Yasmeen M. F. Hamed
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Britya Ghosh
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kara L. Marshall
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Lead contact
| |
Collapse
|
4
|
Hu X, Shinn P, Itkin Z, Ye L, Zhang YQ, Shen M, Ford-Scheimer S, Hall MD. A Comprehensive Collection of Pain and Opioid Use Disorder Compounds for High-Throughput Screening and Artificial Intelligence-Driven Drug Discovery. ACS Pharmacol Transl Sci 2024; 7:2391-2400. [PMID: 39144561 PMCID: PMC11320728 DOI: 10.1021/acsptsci.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024]
Abstract
As part of the NIH Helping to End Addiction Long-term (HEAL) Initiative, the National Center for Advancing Translational Sciences is dedicated to the development of new pharmacological tools and investigational drugs for managing and treating pain as well as the prevention and treatment of opioid misuse and addiction. In line with these objectives, we created a comprehensive, annotated small molecule library including drugs, probes, and tool compounds that act on published pain- and addiction-relevant targets. Nearly 3000 small molecules associated with approximately 200 known and hypothesized HEAL targets have been assembled, curated, and annotated in one collection. Physical samples of the library compounds have been acquired and plated in 1536-well format, enabling a rapid and efficient high-throughput screen against a wide range of assays. The creation of the HEAL Targets and Compounds Library, coupled with an integrated computational platform for AI-driven machine learning, structural modeling, and virtual screening, provides a valuable source for strategic drug repurposing, innovative profiling, and hypothesis testing of novel targets related to pain and opioid use disorder (OUD). The library is available to investigators for screening pain and OUD-relevant phenotypes.
Collapse
Affiliation(s)
- Xin Hu
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | | | - Zina Itkin
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Lin Ye
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ya-Qin Zhang
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Min Shen
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Stephanie Ford-Scheimer
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
5
|
Thien ND, Hai-Nam N, Anh DT, Baecker D. Piezo1 and its inhibitors: Overview and perspectives. Eur J Med Chem 2024; 273:116502. [PMID: 38761789 DOI: 10.1016/j.ejmech.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The cation channel Piezo1, a crucial mechanotransducer found in various organs and tissues, has gained considerable attention as a therapeutic target in recent years. Following this trend, several Piezo1 inhibitors have been discovered and studied for potential pharmacological properties. This review provides an overview of the structural and functional importance of Piezo1, as well as discussing the biological activities of Piezo1 inhibitors based on their mechanism of action. The compounds addressed include the toxin GsMTx4, Aβ peptides, certain fatty acids, ruthenium red and gadolinium, Dooku1, as well as the natural products tubeimoside I, salvianolic acid B, jatrorrhzine, and escin. The findings revealed that misexpression of Piezo1 can be associated with a number of chronic diseases, including hypertension, cancer, and hemolytic anemia. Consequently, inhibiting Piezo1 and the subsequent calcium influx can have beneficial effects on various pathological processes, as shown by many in vitro and in vivo studies. However, the development of Piezo1 inhibitors is still in its beginnings, with many opportunities and challenges remaining to be explored.
Collapse
Affiliation(s)
- Nguyen Duc Thien
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Nguyen Hai-Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam.
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin, 14195, Germany.
| |
Collapse
|
6
|
Gaite JJ, Solé-Magdalena A, García-Mesa Y, Cuendias P, Martin-Cruces J, García-Suárez O, Cobo T, Vega JA, Martín-Biedma B. Immunolocalization of the mechanogated ion channels PIEZO1 and PIEZO2 in human and mouse dental pulp and periodontal ligament. Anat Rec (Hoboken) 2024; 307:1960-1968. [PMID: 37975162 DOI: 10.1002/ar.25351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
PIEZO1 and PIEZO2 are essential components of mechanogated ion channels, which are required for mechanotransduction and biological processes associated with mechanical stimuli. There is evidence for the presence of PIEZO1 and PIEZO2 in teeth and periodontal ligaments, especially in cell lines and mice, but human studies are almost nonexistent. Decalcified permanent human teeth and mouse molars were processed for immunohistochemical detection of PIEZO1 and PIEZO2. Confocal laser microscopy was used to examine the co-localization of PIEZO 1 and PIEZO2 with vimentin (a marker of differentiated odontoblasts) in human teeth. In the outer layer of the human dental pulp, abundant PIEZO1- and PIEZO2-positive cells were found that had no odontoblast morphology and were vimentin-negative. Based on their morphology, location, and the absence of vimentin positivity, they were identified as dental pulp stem cells or pre-odontoblasts. However, in mice, PIEZO1 and PIEZO2 were ubiquitously detected and colocalized in odontoblasts. Intense immunoreactivity of PIEZO1 and PIEZO2 has been observed in human and murine periodontal ligaments. Our findings suggest that PIEZO1 and PIEZO2 may be mechanosensors/mechanotransducers in murine odontoblasts, as well as in the transmission of forces by the periodontal ligament in humans and mice.
Collapse
Affiliation(s)
- Juan J Gaite
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
- Unidad Dental, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Antonio Solé-Magdalena
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Patricia Cuendias
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - José Martin-Cruces
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
- Instituto Asturiano de Odontología, Oviedo, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Santiago, Spain
| |
Collapse
|
7
|
Csemer A, Sokvári C, Maamrah B, Szabó L, Korpás K, Pocsai K, Pál B. Pharmacological Activation of Piezo1 Channels Enhances Astrocyte-Neuron Communication via NMDA Receptors in the Murine Neocortex. Int J Mol Sci 2024; 25:3994. [PMID: 38612801 PMCID: PMC11012114 DOI: 10.3390/ijms25073994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The Piezo1 mechanosensitive ion channel is abundant on several elements of the central nervous system including astrocytes. It has been already demonstrated that activation of these channels is able to elicit calcium waves on astrocytes, which contributes to the release of gliotransmitters. Astrocyte- and N-methyl-D-aspartate (NMDA) receptor-dependent slow inward currents (SICs) are hallmarks of astrocyte-neuron communication. These currents are triggered by glutamate released as gliotransmitter, which in turn activates neuronal NMDA receptors responsible for this inward current having slower kinetics than any synaptic events. In this project, we aimed to investigate whether Piezo1 activation and inhibition is able to alter spontaneous SIC activity of murine neocortical pyramidal neurons. When the Piezo1 opener Yoda1 was applied, the SIC frequency and the charge transfer by these events in a minute time was significantly increased. These changes were prevented by treating the preparations with the NMDA receptor inhibitor D-AP5. Furthermore, Yoda1 did not alter the spontaneous EPSC frequency and amplitude when SICs were absent. The Piezo1 inhibitor Dooku1 effectively reverted the actions of Yoda1 and decreased the rise time of SICs when applied alone. In conclusion, activation of Piezo1 channels is able to alter astrocyte-neuron communication. Via enhancement of SIC activity, astrocytic Piezo1 channels have the capacity to determine neuronal excitability.
Collapse
Affiliation(s)
- Andrea Csemer
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Cintia Sokvári
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Baneen Maamrah
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - László Szabó
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
- HUN-REN DE Cell Physiology Research Group, H-4032 Debrecen, Hungary
| | - Kristóf Korpás
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Krisztina Pocsai
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
| | - Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| |
Collapse
|
8
|
Martín-Cruces J, Cuendias P, García-Mesa Y, Cobo JL, García-Suárez O, Gaite JJ, Vega JA, Martín-Biedma B. Proprioceptive innervation of the human lips. Anat Rec (Hoboken) 2024; 307:669-676. [PMID: 37712912 DOI: 10.1002/ar.25324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
The objective of this study was to analyze the proprioceptive innervation of human lips, especially of the orbicularis oris muscle, since it is classically accepted that facial muscles lack typical proprioceptors, that is, muscle spindles, but recently this has been doubted. Upper and lower human lips (n = 5) from non-embalmed frozen cadavers were immunostained for detection of S100 protein (to identify nerves and sensory nerve formations), myosin heavy chain (to label muscle fibers within muscle spindles), and the mechano-gated ion channel PIEZO2. No muscle spindles were found, but there was a high density of sensory nerve formations, which were morphologically heterogeneous, and in some cases resemble Ruffini-like and Pacinian sensory corpuscles. The axons of these sensory formations displayed immunoreactivity for PIEZO2. Human lip muscles lack typical proprioceptors but possess a dense sensory innervation which can serve the lip proprioception.
Collapse
Affiliation(s)
- José Martín-Cruces
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Patricia Cuendias
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Juan L Cobo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
- Instituto Asturiano de Odontología, Oviedo, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Juan J Gaite
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
- Unidad Dental, Clínica Universitaria de Navarra, Pamplona, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia-Santiago de Chile, Chile
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Santiago, Spain
| |
Collapse
|
9
|
Lau KKL, Law KKP, Kwan KYH, Cheung JPY, Cheung KMC. Proprioception-related gene mutations in relation to the aetiopathogenesis of idiopathic scoliosis: A scoping review. J Orthop Res 2023; 41:2694-2702. [PMID: 37203456 DOI: 10.1002/jor.25626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
Since idiopathic scoliosis is a multifactorial disorder, the proprioceptive defect is considered one of its etiological factors. Genetic studies have separately revealed this relationship, yet it remains indeterminate which specific genes that related to proprioception contributed to the initiation, progression, pathology, and treatment outcomes of the curvature. A systematic search was conducted on four online databases, including PubMed, Web of Science, Embase, and Academic search complete. Studies were included if they involved human or animal subjects with idiopathic scoliosis and evaluated with proprioceptive genes. The search period was the inception of the database to February 21, 2023. Four genes (i.e., Ladybird homeobox 1 [LBX1], Piezo type mechanosensitive ion channel component 2 [PIEZO2], Runx family transcription factor 3 [RUNX3], and neurotrophin 3 [NTF3]) investigated in 19 studies were included. LBX1 has confirmed the correlation with the development of idiopathic scoliosis in 10 ethnicities, whereas PIEZO2 has shown a connection with clinical proprioceptive tests in subjects with idiopathic scoliosis. However, curve severity was less likely to be related to the proprioceptive genes. The potential pathology took place at the proprioceptive neurons. Evidence of proprioception-related gene mutations in association with idiopathic scoliosis was established. Nevertheless, the causation between the initiation, progression, and treatment outcomes with proprioceptive defect requires further investigation.
Collapse
Affiliation(s)
- Kenney K L Lau
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Karlen K P Law
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kenny Y H Kwan
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jason P Y Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics and Traumatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics and Traumatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| |
Collapse
|