1
|
Henderson M, Winston A. Risk factors for cognitive decline in persons with HIV. Curr Opin Infect Dis 2025; 38:37-43. [PMID: 39641182 DOI: 10.1097/qco.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Cognitive disorders persist in persons with HIV, despite virologically suppressive antiretroviral therapy. We summarize the current evidence on risk factors for cognitive decline in persons with HIV in the modern antiretroviral therapy-era. RECENT FINDINGS Recent consensus recommendations have proposed a new approach for defining cognitive impairment in persons with HIV, which distinguishes true cognitive impairment from low cognitive performance alone and considers both HIV and non-HIV-associated causes of brain injury. Adverse mental health, risks associated with substance misuse, and an increasing burden of age-related comorbidities have been highlighted as important contributors toward cognitive decline in this population. Aging may potentiate these risk factors through polypharmacy and drug-drug interactions. SUMMARY Cognitive decline in persons with HIV is likely multifactorial, with contributions from both HIV and non-HIV-associated mechanisms, particularly age-related comorbidities. With an aging community of persons with HIV, screening for risk factors associated with cognitive decline may be crucial to implement appropriate risk reduction strategies.
Collapse
Affiliation(s)
- Merle Henderson
- Department of Infectious Disease, Faculty of Medicine, Imperial College London
- Jefferiss Wing, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London
- Jefferiss Wing, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
2
|
Hussain S, Bahadar H, Khan MI, Qazi NG, Wazir SG, Ahmad HA. Modulation of oxidative stress/NMDA/nitric oxide pathway by topiramate attenuates morphine dependence in mice. Heliyon 2024; 10:e40584. [PMID: 39719994 PMCID: PMC11667026 DOI: 10.1016/j.heliyon.2024.e40584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Morphine belongs to the class of opioids and is known for its potential to cause dependence and addiction, particularly with prolonged use. Due to the associated risks, caution must be taken when prescribing and limiting its clinical use. Overexpression of N-methyl-D-aspartate (NMDA) receptors, nitric oxide and cGMP pathway has been implicated in exacerbate the development of morphine dependence and withdrawal. Topiramate, an antiepileptic drug, interacts with various receptors, ion channels and certain enzymes. In this study, we investigated the effects of topiramate on morphine dependence in mice, specifically targeting NMDA/Nitric oxide/cGMP pathway. Mice were administered different doses of topiramate (intraperitoneally) during the development phase, 45 min prior to morphine administration. Topiramate (20 mg/kg) significantly reduced naloxone-induced withdrawal symptoms in morphine-dependent mice. Additionally, subeffective doses of topiramate, when co-administered with NMDA receptor antagonist MK-801 (0.05 mg/kg) or nitric oxide synthase inhibitors such as L-NAME (10 mg/kg, a non-specific NOS inhibitor) and 7-NI (20 mg/kg, a selective nNOS inhibitor), showed a marked reduction in withdrawal signs. However, the effect of topiramate (20 mg/kg) was abolished when co-administered with NMDA (75 mg/kg, an NMDA receptor agonist) or L-arginine (60 mg/kg, a NOS substrate). Ex-vivo analysis revealed that topiramate significantly reduced oxidative stress and downregulated the gene expression of nNOS, NR1, and NR2B in morphine-treated mice. Furthermore, the expression of NR1 and NR2B proteins in the hippocampus and cortex was significantly reduced in topiramate-pretreated mice. Hence, this finding suggest that topiramate mitigates morphine dependence and withdrawal by inhibiting oxidative stress and modulating the NMDA/NO pathway.
Collapse
Affiliation(s)
- Shabir Hussain
- Department of Pharmacology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Haji Bahadar
- Department of Pharmacology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Neelum Gul Qazi
- Department of Pharmacy, Iqra University, Islamabad, Pakistan
| | - Shabnum Gul Wazir
- Frontier Medical and Dental College, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Habab Ali Ahmad
- Department of Biomedical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Chang SA, Balouch A, Nahyoon WA, Raja AA. Detection of Trace Elements Se, Cu, and Zn Levels in Biological Samples of Drug Abusers: Halani Sindh, Pakistan. Biol Trace Elem Res 2024; 202:4869-4876. [PMID: 38196054 DOI: 10.1007/s12011-023-04056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Illicit drug use has become a global issue, posing significant health, socioeconomic, and cultural risks. The study examined essential trace metals: selenium, zinc, and copper in blood concentrations, as well as in serum and scalp hair samples, from 240 male drug-abuse subjects/patients aged 18-45, categorized into three age groups. The study compared 45 healthy subjects of the same age group using an acid digestion method supported by a microwave oven during sample preparation. The technique of atomic absorption spectrometry was employed to identify essential and toxic elements, utilizing certified reference materials for accuracy. According to a recent study, plasma zinc and selenium concentrations in drug abusers are lower than those in referent subjects, potentially increasing vulnerability to infection due to poor nutritional status or other contaminants.
Collapse
Affiliation(s)
- Sajjad Ali Chang
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
- Institute of Forensic Sciences Forensic Medicine and Toxicology, Liaquat University of Medical and Health Sciences, Jamshoro, 76090, Pakistan.
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Waheed Ali Nahyoon
- Institute of Forensic Sciences Forensic Medicine and Toxicology, Liaquat University of Medical and Health Sciences, Jamshoro, 76090, Pakistan
| | - Aamir Ali Raja
- Jeejal Mau Institute of Physiotherapy and Rehabilitation Sciences, Liaquat University of Medical and Health Sciences, Jamshoro, 76090, Pakistan
| |
Collapse
|
4
|
Mohammadkhani M, Gholami D, Riazi G. The effects of chronic morphine administration on spatial memory and microtubule dynamicity in male mice's brain. IBRO Neurosci Rep 2024; 16:300-308. [PMID: 38390235 PMCID: PMC10881431 DOI: 10.1016/j.ibneur.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
The examination of the influence of morphine on behavioral processes, specifically learning and memory, holds significant importance. Additionally, microtubule proteins play a pivotal role in cellular functions, and the dynamics of microtubules contribute to neural network connectivity, information processing, and memory storage. however, the molecular mechanism of morphine on microtubule dynamics, learning, and memory remains uncovered. In the present study, we examined the effects of chronic morphine administration on memory formation impairment and the kinetic alterations in microtubule proteins induced by morphine in mice. Chronic morphine administration at doses of 5 and 10 mg/kg dose-dependently decreased subjects' performance in spatial memory tasks, such as the Morris Water Maze and Y-maze spontaneous alternation behavior. Furthermore, morphine was found to stabilize microtubule structure, and increase polymerization, and total polymer mass. However, it simultaneously impaired microtubule dynamicity, stemming from structural changes in tubulin dimer structure. These findings emphasize the need for careful consideration of different doses when using morphine, urging a more cautious approach in the administration of this opioid medication.
Collapse
Affiliation(s)
- Mina Mohammadkhani
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Dariush Gholami
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Gholamhossein Riazi
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Lark AR, Nass SR, Hahn YK, Gao B, Milne GL, Knapp PE, Hauser KF. HIV-1 Tat and morphine interactions dynamically shift striatal monoamine levels and exploratory behaviors over time. J Neurochem 2024; 168:185-204. [PMID: 38308495 PMCID: PMC10922901 DOI: 10.1111/jnc.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Despite the advent of combination anti-retroviral therapy (cART), nearly half of people infected with HIV treated with cART still exhibit HIV-associated neurocognitive disorders (HAND). HAND can be worsened by co-morbid opioid use disorder. The basal ganglia are particularly vulnerable to HIV-1 and exhibit higher viral loads and more severe pathology, which can be exacerbated by co-exposure to opioids. Evidence suggests that dopaminergic neurotransmission is disrupted by HIV exposure, however, little is known about whether co-exposure to opioids may alter neurotransmitter levels in the striatum and if this in turn influences behavior. Therefore, we assayed motor, anxiety-like, novelty-seeking, exploratory, and social behaviors, and levels of monoamines and their metabolites following 2 weeks and 2 months of Tat and/or morphine exposure in transgenic mice. Morphine decreased dopamine levels, but significantly elevated norepinephrine, the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid, which typically correlated with increased locomotor behavior. The combination of Tat and morphine altered dopamine, DOPAC, and HVA concentrations differently depending on the neurotransmitter/metabolite and duration of exposure but did not affect the numbers of tyrosine hydroxylase-positive neurons in the mesencephalon. Tat exposure increased the latency to interact with novel conspecifics, but not other novel objects, suggesting the viral protein inhibits exploratory behavior initiation in a context-dependent manner. By contrast, and consistent with prior findings that opioid misuse can increase novelty-seeking behavior, morphine exposure increased the time spent exploring a novel environment. Finally, Tat and morphine interacted to affect locomotor activity in a time-dependent manner, while grip strength and rotarod performance were unaffected. Together, our results provide novel insight into the unique effects of HIV-1 Tat and morphine on monoamine neurochemistry that may underlie their divergent effects on motor and exploratory behavior.
Collapse
Affiliation(s)
| | | | | | - Benlian Gao
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Ginger L. Milne
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Pamela E. Knapp
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| | - Kurt F. Hauser
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| |
Collapse
|
6
|
Mohammadzadeh N, Chomont N, Estaquier J, Cohen EA, Power C. Is the Central Nervous System Reservoir a Hurdle for an HIV Cure? Viruses 2023; 15:2385. [PMID: 38140626 PMCID: PMC10747469 DOI: 10.3390/v15122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
There is currently no cure for HIV infection although adherence to effective antiretroviral therapy (ART) suppresses replication of the virus in blood, increases CD4+ T-cell counts, reverses immunodeficiency, and increases life expectancy. Despite these substantial advances, ART is a lifelong treatment for people with HIV (PWH) and upon cessation or interruption, the virus quickly rebounds in plasma and anatomic sites, including the central nervous system (CNS), resulting in disease progression. With recent advances in quantifying viral burden, detection of genetically intact viral genomes, and isolation of replication-competent virus from brain tissues of PWH receiving ART, it has become apparent that the CNS viral reservoir (largely comprised of macrophage type cells) poses a substantial challenge for HIV cure strategies. Other obstacles impacting the curing of HIV include ageing populations, substance use, comorbidities, limited antiretroviral drug efficacy in CNS cells, and ART-associated neurotoxicity. Herein, we review recent findings, including studies of the proviral integration sites, reservoir decay rates, and new treatment/prevention strategies in the context of the CNS, together with highlighting the next steps for investigations of the CNS as a viral reservoir.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Nicolas Chomont
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada;
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
| | - Jerome Estaquier
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Eric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- Institut de Recherches Cliniques de Montreal, Montreal, QC H2W 1R7, Canada
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|