1
|
Martínez-Rivera FJ, Holt LM, Minier-Toribio A, Estill M, Yeh SY, Tofani S, Futamura R, Browne CJ, Mews P, Shen L, Nestler EJ. Transcriptional characterization of cocaine withdrawal versus extinction within nucleus accumbens in male rats. Nat Commun 2025; 16:2886. [PMID: 40133300 PMCID: PMC11937236 DOI: 10.1038/s41467-025-58151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Neurobiological alterations seen in addiction amplify during abstinence and compromise relapse prevention. Cocaine use disorder (CUD) exemplifies this phenomenon in which reward regions such as nucleus accumbens (NAc) undergo withdrawal-associated modifications. While genome-wide transcriptional changes in NAc are linked to specific addiction phases, these have not been examined in a context- and NAc-subregion-specific manner during withdrawal vs. extinction. We used cocaine self-administration in male rats combined with RNA-sequencing of NAc-core and -shell to transcriptionally profile withdrawal in the home-cage, in the previous drug context, or after extinction. As expected, home-cage withdrawal maintained seeking, whereas extinction reduced it. By contrast, withdrawal involving the drug context only increased seeking. Bioinformatic analyses revealed specific gene expression patterns and networks associated with these states. Comparing NAc datasets of CUD patients highlighted conserved transcriptomic signatures with rats experiencing withdrawal in the drug context. Together, this work reveals fundamental mechanisms that can be targeted to attenuate relapse.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Szu-Ying Yeh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Solange Tofani
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
2
|
Martínez-Rivera FJ, Yim YY, Godino A, Minier-Toribio A, Tofani S, Holt LM, Torres-Berrío A, Futamura R, Browne CJ, Markovic T, Hamilton PJ, Neve RL, Nestler EJ. Cell-Type-Specific Regulation of Cocaine Reward by the E2F3a Transcription Factor in Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602609. [PMID: 39026727 PMCID: PMC11257579 DOI: 10.1101/2024.07.08.602609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of drug addiction is characterized by molecular changes in brain reward regions that lead to the transition from recreational to compulsive drug use. These neurobiological processes in brain reward regions, such as the nucleus accumbens (NAc), are orchestrated in large part by transcriptional regulation. Our group recently identified the transcription factor E2F3a as a novel regulator of cocaine's rewarding effects and gene expression regulation in the NAc of male mice. Despite this progress, no information is available about the role of E2F3a in regulating cocaine reward at the sex- and cell-specific levels. Here, we used male and female mice expressing Cre-recombinase in either D1- or D2-type medium spiny neurons (MSNs) combined with viral-mediated gene transfer to bidirectionally control levels of E2F3a in a cell-type-specific manner in the NAc during conditioned place preference (CPP) to cocaine. Our findings show that selective overexpression of E2F3a in D1-MSNs increased cocaine CPP in both male and female mice, whereas opposite effects were observed under knockdown conditions. In contrast, equivalent E2F3a manipulations in D2-MSNs had no significant effects. To further explore the role of E2F3a in sophisticated operant and motivated behaviors, we performed viral manipulations of all NAc neurons in combination with cocaine self-administration and behavioral economics procedures in rats and demonstrated that E2F3a regulates sensitivity aspects of cocaine seeking and taking. These results confirm E2F3a as a central substrate of cocaine reward and demonstrate that this effect is mediated in D1-MSNs, thereby providing increased knowledge of cocaine action at the transcriptional level.
Collapse
|
3
|
Jones JD, Arout CA, Luba R, Murugesan D, Madera G, Gorsuch L, Schusterman R, Martinez S. The influence of drug class on reward in substance use disorders. Pharmacol Biochem Behav 2024; 240:173771. [PMID: 38670466 PMCID: PMC11162950 DOI: 10.1016/j.pbb.2024.173771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
In the United States, the societal costs associated with drug use surpass $500 billion annually. The rewarding and reinforcing properties that drive the use of these addictive substances are typically examined concerning the neurobiological effects responsible for their abuse potential. In this review, terms such as "abuse potential," "drug," and "addictive properties" are used due to their relevance to the methodological, theoretical, and conceptual framework for understanding the phenomenon of drug-taking behavior and the associated body of preclinical and clinical literature. The use of these terms is not intended to cast aspersions on individuals with substance use disorders (SUD). Understanding what motivates substance use has been a focus of SUD research for decades. Much of this corpus of work has focused on the shared effects of each drug class to increase dopaminergic transmission within the central reward pathways of the brain, or the "reward center." However, the precise influence of each drug class on dopamine signaling, and the extent thereof, differs considerably. Furthermore, the aforementioned substances have effects on several neurobiological targets that mediate and modulate their addictive properties. The current manuscript sought to review the influence of drug class on the rewarding effects of each of the major pharmacological classes of addictive drugs (i.e., psychostimulants, opioids, nicotine, alcohol, and cannabinoids). Our review suggests that even subtle differences in drug effects can result in significant variability in the subjective experience of the drug, altering rewarding and other reinforcing effects. Additionally, this review will argue that reward (i.e., the attractive and motivational property of a stimulus) alone is not sufficient to explain the abuse liability of these substances. Instead, abuse potential is best examined as a function of both positive and negative reinforcing drug effects (i.e., stimuli that the subject will work to attain and stimuli that the subject will work to end or avoid, respectively). Though reward is central to drug use, the factors that motivate and maintain drug taking are varied and complex, with much to be elucidated.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Caroline A Arout
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Rachel Luba
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Dillon Murugesan
- CUNY School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
| | - Gabriela Madera
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Liam Gorsuch
- Department of Psychiatry, The University of British Columbia, 430-5950 University Blvd., Vancouver V6T 1Z3, BC, Canada
| | - Rebecca Schusterman
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|