1
|
De Pastina R, Chiarella SG, Simione L, Raffone A, Pazzaglia M. The remapping of peripersonal space after stroke, spinal cord injury and amputation: A PRISMA systematic review. Neurosci Biobehav Rev 2025; 173:106168. [PMID: 40252881 DOI: 10.1016/j.neubiorev.2025.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Peripersonal space (PPS) is the body-centered area where interactions occur and objects can be reached. Its boundaries are dynamic, modulated by ongoing sensorimotor experiences: limb immobilization shrinks PPS, whereas tool use expands it. However, consistent clinical information on PPS alterations remains limited due to methodological heterogeneity, varying types and severities of sensorimotor disorders, and diverse experimental paradigms. This review explores the causal mechanisms of PPS processing by integrating findings from brain-lesioned patients and individuals with body deafferentation, such as amputees and spinal cord injury (SCI) patients. By comparing the effects of brain lesions and sensorimotor deafferentation, it clarifies how PPS is encoded, maintained, and reorganized following central nervous system damage, bodily changes, and the use of assistive devices. A systematic search of Scopus, Web of Science, and PubMed identified 17 studies: 4 on stroke patients (N = 100), 6 on SCI patients (N = 104), and 7 on amputees (N = 65). Risk of bias was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Despite the limited number of studies and methodological variability, findings consistently show that sensorimotor changes significantly affect PPS. Notably, a contraction of PPS around the affected limb was observed in stroke, SCI patients, and amputees. Assistive devices were able to restore PPS after training, or even immediately in the case of prosthesis use. A shared neurophysiological mechanism across these conditions may underlie PPS as an online construct, continuously updated to reflect the body's current state and its interaction with the environment.
Collapse
Affiliation(s)
- Riccardo De Pastina
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy.
| | - Salvatore Gaetano Chiarella
- International School for Advanced Studies (SISSA), Trieste 34136, Italy; Dipartimento di Scienze Umanistiche e Sociali Internazionali, UNINT, Università degli Studi Internazionali di Roma, Rome 00147, Italy
| | - Luca Simione
- Dipartimento di Scienze Umanistiche e Sociali Internazionali, UNINT, Università degli Studi Internazionali di Roma, Rome 00147, Italy; Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Rome 00185, Italy
| | - Antonino Raffone
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy; Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome 00179, Italy
| |
Collapse
|
2
|
Gherri E, Garofalo G, O'Dowd A, Cudia A. The anticipatory effect of goal-directed action planning with a lower limb on peri-personal space. Cortex 2025; 185:170-183. [PMID: 40073715 DOI: 10.1016/j.cortex.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/12/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025]
Abstract
Recent studies have demonstrated that the representation of peri-personal space (PPS) can be strongly modulated by the intention to execute a spatially-directed hand-movement. However, the question of whether analogous motor-induced PPS modulations can be observed during the planning and execution of goal-directed lower limbs movements has been scarcely investigated. Here we asked whether changes in the visuo-tactile PPS maps occur during the planning of a goal directed foot-movement. We asked participants to respond to the location of a tactile stimulus delivered to the index finger (top) or the thumb (bottom) of the right hand while ignoring a visual distractor presented at congruent or incongruent elevations, either close to the foot or close to the goal of the foot movement. This version of the cross-modal congruency task was performed under two different experimental conditions, as a baseline (static task, no movement involved) and embedded into a dual-task in which participants also had to plan and execute a goal-directed foot movement (dynamic task). In the static task, comparable cross-modal congruency effects (CCE) were present near the foot and near the movement goal. In the dynamic task, the CCE near the foot shrank considerably, whereas a sizable CCE was present near the movement goal. This anticipatory reweighting of the multisensory representation of near-space demonstrates that PPS is modulated by the intention to perform a goal-directed foot movement, with a weakened representation of the space around the currently occupied foot location when a movement is imminent.
Collapse
Affiliation(s)
- Elena Gherri
- Department of Philosophy, University of Bologna, Italy.
| | | | - Alan O'Dowd
- Trinity Institute of Neurosciences, Trinity College Dublin, Ireland
| | | |
Collapse
|
3
|
Mora L, Committeri G, L'Abbate T, Cocchini G. Unlocking the potential of 'passive' modulation: How sensory stimulation shapes hand and face size. J Neuropsychol 2025; 19 Suppl 1:113-130. [PMID: 38877675 PMCID: PMC11923735 DOI: 10.1111/jnp.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Knowledge of the body size is intricately tied to multisensory integration processes that rely on the dynamic interplay of top-down and bottom-up mechanisms. Recent years have seen the development of passive sensory stimulation protocols aimed at investigating the modulation of various cognitive functions, primarily inducing perceptual learning and behaviour change without the need for extensive training. Given that reductions in sensory input have been associated with alterations in body size perception, it is reasonable to hypothesize that increasing sensory information through passive sensory stimulation could similarly influence the perception of the size of body parts. The primary aim of this study was to investigate the potential modulatory effects of passive sensory stimulation on the perception of hand and face size in a group of young adults. Passive sensory stimulation effectively modulated the size representation of the stimulated hand, supporting the notion that access to somatosensory and proprioceptive information is prioritised for the hands but may not extend to the face. Increased somatosensory input resulted in a reduction of distortion, providing evidence for bottom-up modulation of size representation. Passive sensory stimulation can induce subjective changes in body size perception without the need for extensive training. This paradigm holds promise as a potential alternative for modulating distorted size representation in individuals with body representational deficits.
Collapse
Affiliation(s)
- Laura Mora
- Psychology DepartmentGoldsmiths University of LondonLondonUK
| | - Giorgia Committeri
- Institute of Advanced Biomedical TechnologiesUniversity "G. d'Annunzio"Chieti‐PescaraItaly
| | - Teresa L'Abbate
- Department of PsychologyInternational Telematic University UninettunoRomeItaly
| | - Gianna Cocchini
- Psychology DepartmentGoldsmiths University of LondonLondonUK
| |
Collapse
|
4
|
Rodrigues KA, Moreira JVDS, Pinheiro DJLL, Dantas RLM, Santos TC, Nepomuceno JLV, Nogueira MARJ, Cavalheiro EA, Faber J. Embodiment of a virtual prosthesis through training using an EMG-based human-machine interface: Case series. Front Hum Neurosci 2022; 16:870103. [PMID: 35992955 PMCID: PMC9387771 DOI: 10.3389/fnhum.2022.870103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Therapeutic strategies capable of inducing and enhancing prosthesis embodiment are a key point for better adaptation to and acceptance of prosthetic limbs. In this study, we developed a training protocol using an EMG-based human-machine interface (HMI) that was applied in the preprosthetic rehabilitation phase of people with amputation. This is a case series with the objective of evaluating the induction and enhancement of the embodiment of a virtual prosthesis. Six men and a woman with unilateral transfemoral traumatic amputation without previous use of prostheses participated in the study. Participants performed a training protocol with the EMG-based HMI, composed of six sessions held twice a week, each lasting 30 mins. This system consisted of myoelectric control of the movements of a virtual prosthesis immersed in a 3D virtual environment. Additionally, vibrotactile stimuli were provided on the participant’s back corresponding to the movements performed. Embodiment was investigated from the following set of measurements: skin conductance response (affective measurement), crossmodal congruency effect (spatial perception measurement), ability to control the virtual prosthesis (motor measurement), and reports before and after the training. The increase in the skin conductance response in conditions where the virtual prosthesis was threatened, recalibration of the peripersonal space perception identified by the crossmodal congruency effect, ability to control the virtual prosthesis, and participant reports consistently showed the induction and enhancement of virtual prosthesis embodiment. Therefore, this protocol using EMG-based HMI was shown to be a viable option to achieve and enhance the embodiment of a virtual prosthetic limb.
Collapse
Affiliation(s)
- Karina Aparecida Rodrigues
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Karina Aparecida Rodrigues,
| | - João Vitor da Silva Moreira
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Daniel José Lins Leal Pinheiro
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Lantyer Marques Dantas
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Thaís Cardoso Santos
- Neuroengineering Laboratory, Department of Biomedical Engineering, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - João Luiz Vieira Nepomuceno
- Neuroengineering Laboratory, Department of Biomedical Engineering, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | | | - Esper Abrão Cavalheiro
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Jean Faber
- Neuroengineering and Neurocognition Laboratory, Paulista School of Medicine, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
- Neuroengineering Laboratory, Department of Biomedical Engineering, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| |
Collapse
|
5
|
Gherri E, Xu A, Ambron E, Sedda A. Peripersonal space around the upper and the lower limbs. Exp Brain Res 2022; 240:2039-2050. [PMID: 35727366 PMCID: PMC9288357 DOI: 10.1007/s00221-022-06387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Peripersonal space (PPS), the space closely surrounding the body, is typically characterised by enhanced multisensory integration. Neurophysiological and behavioural studies have consistently shown stronger visuo-tactile integration when a visual stimulus is presented close to the tactually stimulate body part in near space (within PPS) than in far space. However, in the majority of these studies, tactile stimuli were delivered to the upper limbs, torso and face. Therefore, it is not known whether the space surrounding the lower limbs is characterised by similar multisensory properties. To address this question, we asked participants to complete two versions of the classic visuo-tactile crossmodal congruency task in which they had to perform speeded elevation judgements of tactile stimuli presented to the dorsum of the hand and foot while a simultaneous visual distractor was presented at spatially congruent or incongruent locations either in near or far space. In line with existing evidence, when the tactile target was presented to the hand, the size of the crossmodal congruency effect (CCE) decreased in far as compared to near space, suggesting stronger visuo-tactile multisensory integration within PPS. In contrast, when the tactile target was presented to the foot, the CCE decreased for visual distractors in near than far space. These findings show systematic differences between the representation of PPS around upper and lower limbs, suggesting that the multisensory properties of the different body part-centred representations of PPS are likely to depend on the potential actions performed by the different body parts.
Collapse
Affiliation(s)
- Elena Gherri
- Department of Philosophy and Communication, University of Bologna, Via Azzo Gardino 23, 40122, Bologna, Italy. .,Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK.
| | - Aolong Xu
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Elisabetta Ambron
- Laboratory for Cognition and Neural Stimulation, Neurology Department, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Sedda
- Department of Psychology, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
6
|
Multisensory integration involved in the body perception of community-dwelling older adults. Sci Rep 2021; 11:1581. [PMID: 33452351 PMCID: PMC7810743 DOI: 10.1038/s41598-021-81121-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigates how the multisensory integration in body perception changes with increasing age, and whether it is associated with older adults’ risk of falling. For this, the rubber hand illusion (RHI) and rubber foot illusion (RFI) were used. Twenty-eight community-dwelling older adults and 25 university students were recruited. They viewed a rubber hand or foot that was stimulated in synchrony or asynchrony with their own hidden hand or foot. The illusion was assessed by using a questionnaire, and measuring the proprioceptive drift and latency. The Timed Up and Go Test was used to classify the older adults into lower and higher fall-risk groups. No difference was observed in the RHI between the younger and older adults. However, several differences were observed in the RFI. Specifically, the older adults with a lower fall-risk hardly experienced the illusion, whereas those with a higher fall-risk experienced it with a shorter latency and no weaker than the younger adults. These results suggest that in older adults, the mechanism of multisensory integration for constructing body perception can change depending on the stimulated body parts, and that the risk of falling is associated with multisensory integration.
Collapse
|
7
|
Weinberger AB, Gallagher NM, Warren ZJ, English GA, Moghaddam FM, Green AE. Implicit pattern learning predicts individual differences in belief in God in the United States and Afghanistan. Nat Commun 2020; 11:4503. [PMID: 32908145 PMCID: PMC7481241 DOI: 10.1038/s41467-020-18362-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 08/13/2020] [Indexed: 11/11/2022] Open
Abstract
Most humans believe in a god, but many do not. Differences in belief have profound societal impacts. Anthropological accounts implicate bottom-up perceptual processes in shaping religious belief, suggesting that individual differences in these processes may help explain variation in belief. Here, in findings replicated across socio-religiously disparate samples studied in the U.S. and Afghanistan, implicit learning of patterns/order within visuospatial sequences (IL-pat) in a strongly bottom-up paradigm predict 1) stronger belief in an intervening/ordering god, and 2) increased strength-of-belief from childhood to adulthood, controlling for explicit learning and parental belief. Consistent with research implicating IL-pat as a basis of intuition, and intuition as a basis of belief, mediation models support a hypothesized effect pathway whereby IL-pat leads to intuitions of order which, in turn, lead to belief in ordering gods. The universality and variability of human IL-pat may thus contribute to the global presence and variability of religious belief.
Collapse
Affiliation(s)
- Adam B Weinberger
- Georgetown University, Washington, DC, 20057, USA.
- University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Natalie M Gallagher
- Georgetown University, Washington, DC, 20057, USA
- Northwestern University, Evanston, IL, 60208, USA
| | - Zachary J Warren
- Georgetown University, Washington, DC, 20057, USA
- The Asia Foundation, 1779 Massachusetts Ave NW #815, Washington, DC, 20036, USA
| | - Gwendolyn A English
- Georgetown University, Washington, DC, 20057, USA
- ETH Zurich, 8092, Zurich, CH-8092, Switzerland
| | | | - Adam E Green
- Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
8
|
Scandola M, Aglioti SM, Lazzeri G, Avesani R, Ionta S, Moro V. Visuo-motor and interoceptive influences on peripersonal space representation following spinal cord injury. Sci Rep 2020; 10:5162. [PMID: 32198431 PMCID: PMC7083926 DOI: 10.1038/s41598-020-62080-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
Peripersonal space (PPS) representation is modulated by information coming from the body. In paraplegic individuals, whose lower limb sensory-motor functions are impaired or completely lost, the representation of PPS around the feet is reduced. However, passive motion can have short-term restorative effects. What remains unclear is the mechanisms underlying this recovery, in particular with regard to the contribution of visual and motor feedback and of interoception. Using virtual reality technology, we dissociated the motor and visual feedback during passive motion in paraplegics with complete and incomplete lesions and in healthy controls. The results show that in the case of paraplegics, the presence of motor feedback was necessary for the recovery of PPS representation, both when the motor feedback was congruent and when it was incongruent with the visual feedback. In contrast, visuo-motor incongruence led to an inhibition of PPS representation in the control group. There were no differences in sympathetic responses between the three groups. Nevertheless, in individuals with incomplete lesions, greater interoceptive sensitivity was associated with a better representation of PPS around the feet in the visuo-motor incongruent conditions. These results shed new light on the modulation of PPS representation, and demonstrate the importance of residual motor feedback and its integration with other bodily information in maintaining space representation.
Collapse
Affiliation(s)
- Michele Scandola
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, Verona, Italy. .,IRCCS, Fondazione Santa Lucia, Rome, Italy.
| | - Salvatore Maria Aglioti
- IRCCS, Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, University of Rome "Sapienza", Rome, Italy.,Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Renato Avesani
- Department of Rehabilitation, IRCSS Sacro Cuore - Don Calabria Hospital, Verona, Italy
| | - Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology-University of Lausanne, Jules Gonin Eye; Hospital-Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Valentina Moro
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Stone KD, Bullock F, Keizer A, Dijkerman HC. The disappearing limb trick and the role of sensory suggestibility in illusion experience. Neuropsychologia 2018; 117:418-427. [DOI: 10.1016/j.neuropsychologia.2018.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
|
10
|
Stanton TR, Gilpin HR, Edwards L, Moseley GL, Newport R. Illusory resizing of the painful knee is analgesic in symptomatic knee osteoarthritis. PeerJ 2018; 6:e5206. [PMID: 30038863 PMCID: PMC6054060 DOI: 10.7717/peerj.5206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Experimental and clinical evidence support a link between body representations and pain. This proof-of-concept study in people with painful knee osteoarthritis (OA) aimed to determine if: (i) visuotactile illusions that manipulate perceived knee size are analgesic; (ii) cumulative analgesic effects occur with sustained or repeated illusions. METHODS Participants with knee OA underwent eight conditions (order randomised): stretch and shrink visuotactile (congruent) illusions and corresponding visual, tactile and incongruent control conditions. Knee pain intensity (0-100 numerical rating scale; 0 = no pain at all and 100 = worst pain imaginable) was assessed pre- and post-condition. Condition (visuotactile illusion vs control) × Time (pre-/post-condition) repeated measure ANOVAs evaluated the effect on pain. In each participant, the most beneficial illusion was sustained for 3 min and was repeated 10 times (each during two sessions); paired t-tests compared pain at time 0 and 180s (sustained) and between illusion 1 and illusion 10 (repeated). RESULTS Visuotactile illusions decreased pain by an average of 7.8 points (95% CI [2.0-13.5]) which corresponds to a 25% reduction in pain, but the tactile only and visual only control conditions did not (Condition × Time interaction: p = 0.028). Visuotactile illusions did not differ from incongruent control conditions where the same visual manipulation occurred, but did differ when only the same tactile input was applied. Sustained illusions prolonged analgesia, but did not increase it. Repeated illusions increased the analgesic effect with an average pain decrease of 20 points (95% CI [6.9-33.1])-corresponding to a 40% pain reduction. DISCUSSION Visuotactile illusions are analgesic in people with knee OA. Our results suggest that visual input plays a critical role in pain relief, but that analgesia requires multisensory input. That visual and tactile input is needed for analgesia, supports multisensory modulation processes as a possible explanatory mechanism. Further research exploring the neural underpinnings of these visuotactile illusions is needed. For potential clinical applications, future research using a greater dosage in larger samples is warranted.
Collapse
Affiliation(s)
- Tasha R. Stanton
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Helen R. Gilpin
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Louisa Edwards
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - G. Lorimer Moseley
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Roger Newport
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
11
|
Tajadura-Jiménez A, Deroy O, Marquardt T, Bianchi-Berthouze N, Asai T, Kimura T, Kitagawa N. Audio-tactile cues from an object's fall change estimates of one's body height. PLoS One 2018; 13:e0199354. [PMID: 29949607 PMCID: PMC6021069 DOI: 10.1371/journal.pone.0199354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/06/2018] [Indexed: 11/18/2022] Open
Abstract
When we drop an object from our hands, we use internal models of both our body height and object-motion to predict when it will hit the floor. What happens if the sensory feedback finally received from the impact conflicts with this prediction? The present study shows that such conflict results in changes in the internal estimates of our body height: When the object people dropped takes longer than expected to hit the floor, they report feeling taller and behave as if their legs were longer. This provides the first evidence of cross-modal recalibration of body-height representations as a function of changes in the distant environment. Crucially, the recalibration results from a mismatch between the predicted and actual outcome of an action, the ball’s release and impact, which are causally-related but separated in space and time. These results suggest that implicit models of object-motion can interact with implicit and explicit models of one’s body height.
Collapse
Affiliation(s)
- Ana Tajadura-Jiménez
- UCL Interaction Centre (UCLIC), University College London, London, United Kingdom
- DEI Interactive Systems Group, Computer Science Department, Universidad Carlos III de Madrid, Leganés, Spain
- Human and Information Science Laboratory, NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa, Japan
| | - Ophelia Deroy
- Centre for the Study of the Senses, School of Advanced Study, University of London, London, United Kingdom
- Munich Center for Neuroscience, Ludwig Maximilian University, Munich, Germany
| | - Torsten Marquardt
- UCL Ear Institute, University College London, London, United Kingdom
| | | | - Tomohisa Asai
- Human and Information Science Laboratory, NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa, Japan
| | - Toshitaka Kimura
- Human and Information Science Laboratory, NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa, Japan
| | - Norimichi Kitagawa
- Human and Information Science Laboratory, NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa, Japan
- BKC Research Organization of Social Sciences, Ritsmeikan University, Shiga, Japan
- Yoshika Institute of Psychology, Shimane, Japan
| |
Collapse
|
12
|
Stone KD, Keizer A, Dijkerman HC. The influence of vision, touch, and proprioception on body representation of the lower limbs. Acta Psychol (Amst) 2018; 185:22-32. [PMID: 29407242 DOI: 10.1016/j.actpsy.2018.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 09/27/2017] [Accepted: 01/16/2018] [Indexed: 11/25/2022] Open
Abstract
Numerous studies have shown that the representation of the hand is distorted. When participants are asked to localize unseen points on the hand (e.g. the knuckle), it is perceived to be wider and shorter than its physical dimensions. Similar distortions occur when people are asked to judge the distance between two tactile points on the hand; estimates made in the longitudinal direction are perceived as significantly shorter than those made in the transverse direction. Yet, when asked to visually compare the shape and size of one's own hand to a template hand, individuals are accurate at estimating the size of their own hands. Thus, it seems that body representations are, at least in part, a function of the most prominent underlying sensory modality used to perceive the body part. Yet, it remains unknown if the representations of other body parts are similarly distorted. The lower limbs, for example, are structurally and functionally very different from the hands, yet their representation(s) are seldom studied. What does the body representation for the leg look like? And is leg representation dependent on which sense is probed when making judgments about its shape and size? In the current study, we investigated what the representation of the leg looks like in visually-, tactually-, and proprioceptively-guided tasks. Results revealed that the leg, like the hand, is distorted in a highly systematic manner. Distortions seem to rely, at least partly, on sensory input. This is the first study, to our knowledge, to systematically investigate leg representation in healthy individuals.
Collapse
|
13
|
Peripersonal space boundaries around the lower limbs. Exp Brain Res 2017; 236:161-173. [DOI: 10.1007/s00221-017-5115-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/27/2017] [Indexed: 11/26/2022]
|
14
|
Marini F, Romano D, Maravita A. The contribution of response conflict, multisensory integration, and body-mediated attention to the crossmodal congruency effect. Exp Brain Res 2016; 235:873-887. [PMID: 27913817 DOI: 10.1007/s00221-016-4849-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/27/2016] [Indexed: 11/28/2022]
Abstract
The crossmodal congruency task is a consolidated paradigm for investigating interactions between vision and touch. In this task, participants judge the elevation of a tactile target stimulus while ignoring a visual distracter stimulus that may occur at a congruent or incongruent elevation, thus engendering a measure of visuo-tactile interference (crossmodal congruency effect, CCE). The CCE reflects perceptual, attentional, and response-related factors, but their respective roles and interactions have not been set out yet. In two experiments, we used the original version of the crossmodal congruency task as well as ad hoc manipulations of the experimental setting and of the participants' posture for characterizing the contributions of multisensory integration, body-mediated attention, and response conflict to the CCE. Results of the two experiments consistently showed that the largest amount of variance in the CCE is explained by the reciprocal elevation of visual and tactile stimuli. This finding is compatible with a major role of response conflict for the CCE. Weaker yet distinguishable contributions come from multisensory integration, observed in the absence of response conflict, and from hand-mediated attentional binding, observed with the modified posture and in the presence of response conflict. Overall, this study informs the long-standing debate about mechanisms underlying the CCE by revealing that the visuo-tactile interference in this task is primarily due to the competition between opposite response tendencies, with an additional contribution of multisensory integration and hand-mediated attentional binding.
Collapse
Affiliation(s)
- Francesco Marini
- Department of Psychology, University of Milano-Bicocca, Milan, Italy. .,Department of Psychology, University of Nevada Reno, 1664 N Virginia St, Reno, NV, 89557, USA.
| | - Daniele Romano
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience, Milan, Italy
| | - Angelo Maravita
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
15
|
Shokur S, Gallo S, Moioli RC, Donati ARC, Morya E, Bleuler H, Nicolelis MAL. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback. Sci Rep 2016; 6:32293. [PMID: 27640345 PMCID: PMC5027552 DOI: 10.1038/srep32293] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/04/2016] [Indexed: 11/23/2022] Open
Abstract
Spinal cord injuries disrupt bidirectional communication between the patient’s brain and body. Here, we demonstrate a new approach for reproducing lower limb somatosensory feedback in paraplegics by remapping missing leg/foot tactile sensations onto the skin of patients’ forearms. A portable haptic display was tested in eight patients in a setup where the lower limbs were simulated using immersive virtual reality (VR). For six out of eight patients, the haptic display induced the realistic illusion of walking on three different types of floor surfaces: beach sand, a paved street or grass. Additionally, patients experienced the movements of the virtual legs during the swing phase or the sensation of the foot rolling on the floor while walking. Relying solely on this tactile feedback, patients reported the position of the avatar leg during virtual walking. Crossmodal interference between vision of the virtual legs and tactile feedback revealed that patients assimilated the virtual lower limbs as if they were their own legs. We propose that the addition of tactile feedback to neuroprosthetic devices is essential to restore a full lower limb perceptual experience in spinal cord injury (SCI) patients, and will ultimately, lead to a higher rate of prosthetic acceptance/use and a better level of motor proficiency.
Collapse
Affiliation(s)
- Solaiman Shokur
- Neurorehabilitation Laboratory, Associação Alberto Santos Dumont para Apoio à Pesquisa (AASDAP), São Paulo, Brazil
| | - Simone Gallo
- STI IMT, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Renan C Moioli
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Brazil.,Alberto Santos Dumont Education and Research Institute, São Paulo, Brazil
| | - Ana Rita C Donati
- Neurorehabilitation Laboratory, Associação Alberto Santos Dumont para Apoio à Pesquisa (AASDAP), São Paulo, Brazil.,Associação de Assistência à Criança Deficiente (AACD), São Paulo, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Brazil.,Alberto Santos Dumont Education and Research Institute, São Paulo, Brazil
| | - Hannes Bleuler
- STI IMT, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Miguel A L Nicolelis
- Neurorehabilitation Laboratory, Associação Alberto Santos Dumont para Apoio à Pesquisa (AASDAP), São Paulo, Brazil.,Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Brazil.,Alberto Santos Dumont Education and Research Institute, São Paulo, Brazil.,Department of Neurobiology, Duke University, Durham, NC, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Center for Neuroengineering, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
Scandola M, Aglioti SM, Bonente C, Avesani R, Moro V. Spinal cord lesions shrink peripersonal space around the feet, passive mobilization of paraplegic limbs restores it. Sci Rep 2016; 6:24126. [PMID: 27049439 PMCID: PMC4822176 DOI: 10.1038/srep24126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/18/2016] [Indexed: 12/02/2022] Open
Abstract
Peripersonal space (PPS) is the space surrounding us within which we interact with objects. PPS may be modulated by actions (e.g. when using tools) or sense of ownership (e.g. over a rubber hand). Indeed, intense and/or prolonged use of a tool may induce a sense of ownership over it. Conversely, inducing ownership over a rubber hand may activate brain regions involved in motor control. However, the extent to which PPS is modulated by action-dependent or ownership-dependent mechanisms remains unclear. Here, we explored the PPS around the feet and the sense of ownership over lower limbs in people with Paraplegia following Complete spinal cord Lesions (PCL) and in healthy subjects. PCL people can move their upper body but have lost all sensory-motor functions in their lower body (e.g. lower limbs). We tested whether PPS alterations reflect the topographical representations of various body parts. We found that the PPS around the feet was impaired in PCL who however had a normal representation of the PPS around the hands. Significantly, passive mobilization of paraplegic limbs restored the PPS around the feet suggesting that activating action representations in PCL brings about short-term changes of PPS that may thus be more plastic than previously believed.
Collapse
Affiliation(s)
- Michele Scandola
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, Verona I-37129, Italy.,IRCCS, Fondazione Santa Lucia, Rome I-00179, Italy
| | - Salvatore Maria Aglioti
- Department of Psychology, University of Rome "Sapienza", Rome I-00185, Italy.,IRCCS, Fondazione Santa Lucia, Rome I-00179, Italy
| | - Claudio Bonente
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, Verona I-37129, Italy
| | - Renato Avesani
- Department of Rehabilitation, Sacro Cuore - Don Calabria Hospital, Negrar I-37024, Verona, Italy
| | - Valentina Moro
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, Verona I-37129, Italy
| |
Collapse
|
17
|
Pozeg P, Galli G, Blanke O. Those are Your Legs: The Effect of Visuo-Spatial Viewpoint on Visuo-Tactile Integration and Body Ownership. Front Psychol 2015; 6:1749. [PMID: 26635663 PMCID: PMC4646976 DOI: 10.3389/fpsyg.2015.01749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/31/2015] [Indexed: 11/13/2022] Open
Abstract
Experiencing a body part as one's own, i.e., body ownership, depends on the integration of multisensory bodily signals (including visual, tactile, and proprioceptive information) with the visual top-down signals from peripersonal space. Although it has been shown that the visuo-spatial viewpoint from where the body is seen is an important visual top-down factor for body ownership, different studies have reported diverging results. Furthermore, the role of visuo-spatial viewpoint (sometime also called first-person perspective) has only been studied for hands or the whole body, but not for the lower limbs. We thus investigated whether and how leg visuo-tactile integration and leg ownership depended on the visuo-spatial viewpoint from which the legs were seen and the anatomical similarity of the visual leg stimuli. Using a virtual leg illusion, we tested the strength of visuo-tactile integration of leg stimuli using the crossmodal congruency effect (CCE) as well as the subjective sense of leg ownership (assessed by a questionnaire). Fifteen participants viewed virtual legs or non-corporeal control objects, presented either from their habitual first-person viewpoint or from a viewpoint that was rotated by 90°(third-person viewpoint), while applying visuo-tactile stroking between the participants legs and the virtual legs shown on a head-mounted display. The data show that the first-person visuo-spatial viewpoint significantly boosts the visuo-tactile integration as well as the sense of leg ownership. Moreover, the viewpoint-dependent increment of the visuo-tactile integration was only found in the conditions when participants viewed the virtual legs (absent for control objects). These results confirm the importance of first person visuo-spatial viewpoint for the integration of visuo-tactile stimuli and extend findings from the upper extremity and the trunk to visuo-tactile integration and ownership for the legs.
Collapse
Affiliation(s)
- Polona Pozeg
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne , Lausanne, Switzerland ; Laboratory of Cognitive Neuroscience, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne , Lausanne, Switzerland
| | - Giulia Galli
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne , Lausanne, Switzerland ; Istituti di Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia , Rome, Italy
| | - Olaf Blanke
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne , Lausanne, Switzerland ; Laboratory of Cognitive Neuroscience, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne , Lausanne, Switzerland ; Department of Neurology, University Hospital of Geneva , Geneva, Switzerland
| |
Collapse
|
18
|
Paranormal psychic believers and skeptics: a large-scale test of the cognitive differences hypothesis. Mem Cognit 2015; 44:242-61. [DOI: 10.3758/s13421-015-0563-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
De Paepe AL, Crombez G, Legrain V. From a Somatotopic to a Spatiotopic Frame of Reference for the Localization of Nociceptive Stimuli. PLoS One 2015; 10:e0137120. [PMID: 26317671 PMCID: PMC4552762 DOI: 10.1371/journal.pone.0137120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
To react efficiently to potentially threatening stimuli, we have to be able to localize these stimuli in space. In daily life we are constantly moving so that our limbs can be positioned at the opposite side of space. Therefore, a somatotopic frame of reference is insufficient to localize nociceptive stimuli. Here we investigated whether nociceptive stimuli are mapped into a spatiotopic frame of reference, and more specifically a peripersonal frame of reference, which takes into account the position of the body limbs in external space, as well as the occurrence of external objects presented near the body. Two temporal order judgment (TOJ) experiments were conducted, during which participants had to decide which of two nociceptive stimuli, one applied to either hand, had been presented first while their hands were either uncrossed or crossed over the body midline. The occurrence of the nociceptive stimuli was cued by uninformative visual cues. We found that the visual cues prioritized the perception of nociceptive stimuli applied to the hand laying in the cued side of space, irrespective of posture. Moreover, the influence of the cues was smaller when they were presented far in front of participants' hands as compared to when they were presented in close proximity. Finally, participants' temporal sensitivity was reduced by changing posture. These findings are compatible with the existence of a peripersonal frame of reference for the localization of nociceptive stimuli. This allows for the construction of a stable representation of our body and the space closely surrounding our body, enabling a quick and efficient reaction to potential physical threats.
Collapse
Affiliation(s)
- Annick L. De Paepe
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- * E-mail:
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels Woluwe, Belgium
| |
Collapse
|
20
|
Application of the rubber hand illusion paradigm: comparison between upper and lower limbs. PSYCHOLOGICAL RESEARCH 2015; 80:298-306. [DOI: 10.1007/s00426-015-0650-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 01/31/2015] [Indexed: 10/24/2022]
|
21
|
Furlanetto T, Gallace A, Ansuini C, Becchio C. Effects of arm crossing on spatial perspective-taking. PLoS One 2014; 9:e95748. [PMID: 24752571 PMCID: PMC3994149 DOI: 10.1371/journal.pone.0095748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/29/2014] [Indexed: 11/19/2022] Open
Abstract
Human social interactions often require people to take a different perspective than their own. Although much research has been done on egocentric spatial representation in a solo context, little is known about how space is mapped in relation to other bodies. Here we used a spatial perspective-taking paradigm to investigate whether observing a person holding his arms crossed over the body midline has an impact on the encoding of left/right and front/back spatial relations from that person's perspective. In three experiments, we compared performance in a task in which spatial judgments were made from the perspective of the participant or from that of a co-experimenter. Depending on the experimental condition, the participant's and the co-experimenter's arms were either crossed or not crossed over the midline. Our results showed that crossing the arms had a specific effect on spatial judgments based on a first-person perspective. More specifically, the responses corresponding to the dominant hand side were slower in the crossed than in the uncrossed arms condition. Crucially, a similar effect was also found when the participants adopted the perspective of a person holding his arms crossed, but not when the other person's arms were held in an unusual but uncrossed posture. Taken together these findings indicate that egocentric space and altercentric space are similarly coded in neurocognitive maps structured with respect to specific body segments.
Collapse
Affiliation(s)
- Tiziano Furlanetto
- Centre for Cognitive Science, Department of Psychology, Università degli Studi di Torino, Torino, Italy
| | - Alberto Gallace
- Department of Psychology, Università degli Studi di Milano Bicocca, Milano, Italy
| | - Caterina Ansuini
- Department of Robotics, Brain and Cognitive Science, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Cristina Becchio
- Centre for Cognitive Science, Department of Psychology, Università degli Studi di Torino, Torino, Italy
- Department of Robotics, Brain and Cognitive Science, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
- * E-mail:
| |
Collapse
|
22
|
Reduced effects of tendon vibration with increased task demand during active, cyclical ankle movements. Exp Brain Res 2013; 232:283-92. [PMID: 24136344 DOI: 10.1007/s00221-013-3739-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Tendon vibration can alter proprioceptive feedback, one source of sensory information which humans can use to produce accurate movements. However, the effects of tendon vibration during functional movement vary depending on the task. For example, ankle tendon vibration has considerably smaller effects during walking than standing posture. The purpose of this study was to test whether the effects of ankle tendon vibration are predictably influenced by the mechanical demands of a task, as quantified by peak velocity. Twelve participants performed symmetric, cyclical ankle plantar flexion/dorsiflexion movements while lying prone with their ankle motion unconstrained. The prescribed movement period (1, 3 s) and peak-to-peak amplitude (10°, 15°, 20°) were varied across trials; shorter movement periods or larger amplitudes increased the peak velocity. In some trials, vibration was continuously and simultaneously applied to the right ankle plantar flexor and dorsiflexor tendons, while the left ankle tendons were never vibrated. The vibration frequency (40, 80, 120, 160 Hz) was varied across trials. During trials without vibration, participants accurately matched the movement of their ankles. The application of 80 Hz vibration to the right ankle tendons significantly reduced the amplitude of right ankle movement. However, the effect of vibration was smaller during more mechanically demanding (i.e., higher peak velocity) movements. Higher vibration frequencies had larger effects on movement accuracy, possibly due to parallel increases in vibration amplitude. These results demonstrate that the effects of ankle tendon vibration are dependent on the mechanical demand of the task being performed, but cannot definitively identify the underlying physiological mechanism.
Collapse
|