1
|
Ben-Ami S, Buaron B, Yaron O, Keane K, Sun VH, Phillips F, Friedman J, Sinha P, Mukamel R. What the visual system can learn from the non-dominant hand: The effect of graphomotor engagement on visual discrimination. Mem Cognit 2025; 53:325-340. [PMID: 39500856 PMCID: PMC11779777 DOI: 10.3758/s13421-024-01628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 01/30/2025]
Abstract
Previous studies have demonstrated that engaging in graphomotor activity for creating graphemes can enhance their subsequent visual discrimination. This suggests a positive influence of the motor system on visual learning. However, existing studies have emphasized the dominant hand, which is superiorly dexterous in fine-motor movements. This near-exclusive focus prompts the inquiry of whether the observed perceptual facilitation is a general characteristic of the motor system, or specific to pathways controlling the skilled over-trained dominant hand. Furthermore, the mechanistic underpinning of visual facilitation from graphomotor training (i.e., the individual contribution of motor activity, temporal evolution of the visual trace, variability of visual output) remain unclear. To address these questions, we assessed visual discrimination capabilities of healthy right-handed participants (N = 60) before and after graphomotor or visual training. Contrary to our initial expectation, graphomotor engagement with the non-dominant hand did not yield additional benefits to visual learning beyond those attainable through visual training alone. Moreover, graphomotor training with the non-dominant hand resulted in visual discrimination improvements comparable to those of dominant hand training, despite the inherent differences between hands in motor performance and in the amount of improvement in shape tracing throughout training. We conclude that the motor components of graphomotor activity may not be critical for visual learning of shapes through tracing activity. Instead, our results are in agreement with the symbolic theoretical account, suggesting that basic shape features required for discrimination can be acquired through visual inspection alone, providing a perspective on the improvements observed in prior studies.
Collapse
Affiliation(s)
- Shlomit Ben-Ami
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Batel Buaron
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Ori Yaron
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Kyle Keane
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Computer Science, University of Bristol, Bristol, UK
| | | | - Flip Phillips
- MAGIC Center, Rochester Institute of Technology, Rochester, NY, USA
| | - Jason Friedman
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- Department of Physical Therapy, Faculty of Medical and Health Sciences, Stanley Steyer School of Health Professions, Tel Aviv University, Tel Aviv, Israel
| | - Pawan Sinha
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roy Mukamel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Buaron B, Reznik D, Mukamel R. High or low expectations: Expected intensity of action outcome is embedded in action kinetics. Cognition 2024; 251:105887. [PMID: 39018636 DOI: 10.1016/j.cognition.2024.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Goal-directed actions are performed in order to attain certain sensory consequences in the world. However, expected attributes of these consequences can affect the kinetics of the action. In a set of three studies (n = 120), we examined how expected attributes of stimulus outcome (intensity) shape the kinetics of the triggering action (applied force), even when the action kinetic and attribute are independent. We show that during action execution (button presses), the expected intensity of sensory outcome affects the applied force of the stimulus-producing action in an inverse fashion. Thus, participants applied more force when the expected intensity of the outcome was low (vs. high intensity outcome). In the absence of expectations or when actions were performed in response to the sensory event, no intensity-dependent force modulations were found. Thus, expectations of stimulus intensity and causality play an important role in shaping action kinetics. Finally, we examined the relationship between kinetics and perception and found no influence of applied force level on perceptual detection of low intensity (near-threshold) outcome stimuli, suggesting no causal link between the two. Taken together, our results demonstrate that action kinetics are embedded with high-level context such as the expectation of consequence intensity and the causal relationship with environmental cues.
Collapse
Affiliation(s)
- Batel Buaron
- Sagol School of Neuroscience and School of Psychological Sciences, Tel-Aviv University, Israel
| | - Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipizg, Germany
| | - Roy Mukamel
- Sagol School of Neuroscience and School of Psychological Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
3
|
Ody E, Straube B, He Y, Kircher T. Perception of self-generated and externally-generated visual stimuli: Evidence from EEG and behavior. Psychophysiology 2023:e14295. [PMID: 36966486 DOI: 10.1111/psyp.14295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/23/2023] [Accepted: 03/04/2023] [Indexed: 03/27/2023]
Abstract
Efference copy-based forward model mechanisms may help us to distinguish between self-generated and externally-generated sensory consequences. Previous studies have shown that self-initiation modulates neural and perceptual responses to identical stimulation. For example, event-related potentials (ERPs) elicited by tones that follow a button press are reduced in amplitude relative to ERPs elicited by passively attended tones. However, previous EEG studies investigating visual stimuli in this context are rare, provide inconclusive results, and lack adequate control conditions with passive movements. Furthermore, although self-initiation is known to modulate behavioral responses, it is not known whether differences in the amplitude of ERPs also reflect differences in perception of sensory outcomes. In this study, we presented to participants visual stimuli consisting of gray discs following either active button presses, or passive button presses, in which an electromagnet moved the participant's finger. Two discs presented visually 500-1250 ms apart followed each button press, and participants judged which of the two was more intense. Early components of the primary visual response (N1 and P2) over the occipital electrodes were suppressed in the active condition. Interestingly, suppression in the intensity judgment task was only correlated with suppression of the visual P2 component. These data support the notion of efference copy-based forward model predictions in the visual sensory modality, but especially later processes (P2) seem to be perceptually relevant. Taken together, the results challenge the assumption that N1 differences reflect perceptual suppression and emphasize the relevance of the P2 ERP component.
Collapse
Affiliation(s)
- Edward Ody
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf Bultmann-Strasse 8, Marburg, 35039, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf Bultmann-Strasse 8, Marburg, 35039, Germany
| | - Yifei He
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf Bultmann-Strasse 8, Marburg, 35039, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf Bultmann-Strasse 8, Marburg, 35039, Germany
| |
Collapse
|
4
|
Kiepe F, Kraus N, Hesselmann G. Virtual occlusion effects on the perception of self-initiated visual stimuli. Conscious Cogn 2023; 107:103460. [PMID: 36577211 DOI: 10.1016/j.concog.2022.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Virtual reality (VR) has established itself as a useful tool in the study of human perception in the laboratory. A recent study introduced a new approach to examine visual sensory attenuation (SA) effects in VR. Hand movements triggered the appearance of Gabor stimuli, which were either presented behind the participant's hand - not rendered in VR ("virtual occlusion") - or elsewhere on the display. Virtual occlusion led to a rightward shift of the psychometric curve, suggesting that self-generated hand movements reduced the perceived contrast of the stimulus. Since such attenuation effects might provide a window into the predictive processing of the sensory and cognitive apparatus, we sought to better understand the nature of the virtual occlusion effects. In our study, the presentation of test stimuli was either self-initiated, self-initiated with a variable delay, or triggered externally; the test stimuli were occluded or not. In conflict with our hypothesis, we found moderate to strong evidence for an absence of any horizontal shifts between the psychometric curves. However, virtual occlusion was associated with a decrease in the slope of the psychometric function. Our results suggest that virtual occlusion attenuated the relative perceptual sensitivity, so that participants had more difficulty discriminating contrast differences when the test stimulus was presented behind the hand. We tentatively conclude that, in the visual domain, the discriminability of stimulus intensity is modified by internal predictive cues (i.e., proprioception), possibly linked to shifts in covert spatial attention.
Collapse
Affiliation(s)
- Fabian Kiepe
- Psychologische Hochschule Berlin (PHB), Department of General and Biological Psychology, Berlin, Germany.
| | - Nils Kraus
- Psychologische Hochschule Berlin (PHB), Department of General and Biological Psychology, Berlin, Germany
| | - Guido Hesselmann
- Psychologische Hochschule Berlin (PHB), Department of General and Biological Psychology, Berlin, Germany.
| |
Collapse
|
5
|
Lubinus C, Einhäuser W, Schiller F, Kircher T, Straube B, van Kemenade BM. Action-based predictions affect visual perception, neural processing, and pupil size, regardless of temporal predictability. Neuroimage 2022; 263:119601. [PMID: 36064139 DOI: 10.1016/j.neuroimage.2022.119601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 10/31/2022] Open
Abstract
Sensory consequences of one's own action are often perceived as less intense, and lead to reduced neural responses, compared to externally generated stimuli. Presumably, such sensory attenuation is due to predictive mechanisms based on the motor command (efference copy). However, sensory attenuation has also been observed outside the context of voluntary action, namely when stimuli are temporally predictable. Here, we aimed at disentangling the effects of motor and temporal predictability-based mechanisms on the attenuation of sensory action consequences. During fMRI data acquisition, participants (N = 25) judged which of two visual stimuli was brighter. In predictable blocks, the stimuli appeared temporally aligned with their button press (active) or aligned with an automatically generated cue (passive). In unpredictable blocks, stimuli were presented with a variable delay after button press/cue, respectively. Eye tracking was performed to investigate pupil-size changes and to ensure proper fixation. Self-generated stimuli were perceived as darker and led to less neural activation in visual areas than their passive counterparts, indicating sensory attenuation for self-generated stimuli independent of temporal predictability. Pupil size was larger during self-generated stimuli, which correlated negatively with the blood oxygenation level dependent (BOLD) response: the larger the pupil, the smaller the BOLD amplitude in visual areas. Our results suggest that sensory attenuation in visual cortex is driven by action-based predictive mechanisms rather than by temporal predictability. This effect may be related to changes in pupil diameter. Altogether, these results emphasize the role of the efference copy in the processing of sensory action consequences.
Collapse
Affiliation(s)
- Christina Lubinus
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main D-60322, Germany; Department of Psychiatry and Psychotherapy and Center for Mind, Brain and Behavior (CMBB), University of Marburg, Rudolf-Bultmann-Str. 8, Marburg D-35039, Germany.
| | - Wolfgang Einhäuser
- Institute of Physics, Physics of Cognition Group, Chemnitz University of Technology, Chemnitz D-09107, Germany
| | - Florian Schiller
- Department of Psychology, Justus Liebig University Giessen, Otto-Behaghel-Str. 10, Giessen D-35394, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy and Center for Mind, Brain and Behavior (CMBB), University of Marburg, Rudolf-Bultmann-Str. 8, Marburg D-35039, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy and Center for Mind, Brain and Behavior (CMBB), University of Marburg, Rudolf-Bultmann-Str. 8, Marburg D-35039, Germany
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy and Center for Mind, Brain and Behavior (CMBB), University of Marburg, Rudolf-Bultmann-Str. 8, Marburg D-35039, Germany; Center for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
6
|
Reddy NN. The implicit sense of agency is not a perceptual effect but is a judgment effect. Cogn Process 2021; 23:1-13. [PMID: 34751857 DOI: 10.1007/s10339-021-01066-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
The sense of agency (SoA) is characterized as the sense of being the causal agent of one's own actions, and it is measured in two forms: explicit and implicit. In the explicit SoA experiments, the participants explicitly report whether they have a sense of control over their actions or whether they or somebody else is the causal agent of seen actions; the implicit SoA experiments study how do participants' agentive or voluntary actions modify perceptual processes (like time, vision, tactility, and audition) without directly asking the participants to explicitly think about their causal agency or sense of control. However, recent implicit SoA literature reported contradictory findings of the relationship between implicit SoA reports and agency states. Thus, I argue that the purported implicit SoA reports are not agency-driven perceptual effects per se but are judgment effects, by showing that (a) the typical operationalizations in implicit SoA domain lead to perceptual uncertainty on the part of the participants, (b) under uncertainty, participants' implicit SoA reports are due to heuristic judgments which are independent of agency states, and (c) under perceptual certainty, the typical implicit SoA reports might not have occurred at all. Thus, I conclude that the instances of implicit SoA are judgments (or response biases)-under uncertainty-rather than perceptual effects.
Collapse
|
7
|
Buaron B, Reznik D, Gilron R, Mukamel R. Voluntary Actions Modulate Perception and Neural Representation of Action-Consequences in a Hand-Dependent Manner. Cereb Cortex 2020; 30:6097-6107. [PMID: 32607565 DOI: 10.1093/cercor/bhaa156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Evoked neural activity in sensory regions and perception of sensory stimuli are modulated when the stimuli are the consequence of voluntary movement, as opposed to an external source. It has been suggested that such modulations are due to motor commands that are sent to relevant sensory regions during voluntary movement. However, given the anatomical-functional laterality bias of the motor system, it is plausible that the pattern of such behavioral and neural modulations will also exhibit a similar bias, depending on the effector triggering the stimulus (e.g., right/left hand). Here, we examined this issue in the visual domain using behavioral and neural measures (fMRI). Healthy participants judged the relative brightness of identical visual stimuli that were either self-triggered (using right/left hand button presses), or triggered by the computer. Stimuli were presented either in the right or left visual field. Despite identical physical properties of the visual consequences, we found stronger perceptual modulations when the triggering hand was ipsi- (rather than contra-) lateral to the stimulated visual field. Additionally, fMRI responses in visual cortices differentiated between stimuli triggered by right/left hand. Our findings support a model in which voluntary actions induce sensory modulations that follow the anatomical-functional bias of the motor system.
Collapse
Affiliation(s)
- Batel Buaron
- Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Daniel Reznik
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Ro'ee Gilron
- Department of Neurological Surgery, UCSF School of Medicine, UCSF, San Francisco, CA 94115, USA
| | - Roy Mukamel
- Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Intentional binding coincides with explicit sense of agency. Conscious Cogn 2019; 67:1-15. [DOI: 10.1016/j.concog.2018.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023]
|
9
|
Motor output, neural states and auditory perception. Neurosci Biobehav Rev 2019; 96:116-126. [DOI: 10.1016/j.neubiorev.2018.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
|
10
|
My action lasts longer: Potential link between subjective time and agency during voluntary action. Conscious Cogn 2017; 51:243-257. [PMID: 28412643 DOI: 10.1016/j.concog.2017.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/12/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022]
Abstract
Time perception distorts across different phases of bodily movement. During motor execution, sensory feedback matching an internal sensorimotor prediction is perceived to last longer. The sensorimotor prediction also underlies sense of agency. We investigated association between subjective time and agency during voluntary action. Participants performed hand action while watching a video feedback of their hand with various delays to manipulate agency. The perceived duration and agency over the video feedback were judged. Minimal delay of the video feedback resulted in longer perceived duration than the actual duration and stronger agency, while substantial feedback delay resulted in shorter perceived duration and weaker agency. These fluctuations of perceived duration and agency were nullified by the feedback of other's hand instead of their own, but not by inverted feedback from a third-person perspective. Subjective time during action might be associated with agency stemming from sensorimotor prediction, and self-other distinction based on bodily appearance.
Collapse
|
11
|
Apparent time interval of visual stimuli is compressed during fast hand movement. PLoS One 2015; 10:e0124901. [PMID: 25853892 PMCID: PMC4390366 DOI: 10.1371/journal.pone.0124901] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/16/2015] [Indexed: 11/23/2022] Open
Abstract
The influence of body movements on visual time perception is receiving increased attention. Past studies showed apparent expansion of visual time before and after the execution of hand movements and apparent compression of visual time during the execution of eye movements. Here we examined whether the estimation of sub-second time intervals between visual events is expanded, compressed, or unaffected during the execution of hand movements. The results show that hand movements, at least the fast ones, reduced the apparent time interval between visual events. A control experiment indicated that the apparent time compression was not produced by the participants’ involuntary eye movements during the hand movements. These results, together with earlier findings, suggest hand movement can change apparent visual time either in a compressive way or in an expansive way, depending on the relative timing between the hand movement and visual stimulus.
Collapse
|