1
|
Bai Y, Yang L, Meng X, Huang Y, Wang Q, Gong A, Feng Z, Ziemann U. Breakdown of effective information flow in disorders of consciousness: Insights from TMS-EEG. Brain Stimul 2024; 17:533-542. [PMID: 38641169 DOI: 10.1016/j.brs.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND The complexity of the neurophysiological mechanisms underlying human consciousness is widely acknowledged, with information processing and flow originating in cortex conceived as a core mechanism of consciousness emergence. Combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is considered as a promising technique to understand the effective information flow associated with consciousness. OBJECTIVES To investigate information flow with TMS-EEG and its relationship to different consciousness states. METHODS We applied an effective information flow analysis by combining time-varying multivariate adaptive autoregressive model and adaptive directed transfer function on TMS-EEG data of frontal, motor and parietal cortex in patients with disorder of consciousness (DOC), including 14 vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients, 21 minimally conscious state (MCS) patients, and 22 healthy subjects. RESULTS TMS in DOC patients, particularly VS/UWS, induced a significantly weaker effective information flow compared to healthy subjects. The bidirectional directed information flow was lost in DOC patients with TMS of frontal, motor and parietal cortex. The interactive ROI rate of the information flow network induced by TMS of frontal and parietal cortex was significantly lower in VS/UWS than in MCS. The interactive ROI rate correlated with DOC clinical scales. CONCLUSIONS TMS-EEG revealed a physiologically relevant correlation between TMS-induced information flow and levels of consciousness. This suggests that breakdown of effective cortical information flow serves as a viable marker of human consciousness. SIGNIFICANCE Findings offer a unique perspective on the relevance of information flow in DOC, thus providing a novel way of understanding the physiological basis of human consciousness.
Collapse
Affiliation(s)
- Yang Bai
- Center of Disorders of Consciousness Rehabilitation, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Li Yang
- Center of Disorders of Consciousness Rehabilitation, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China
| | - Xiangqiang Meng
- Center of Disorders of Consciousness Rehabilitation, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China
| | - Ying Huang
- Center of Disorders of Consciousness Rehabilitation, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China
| | - Qijun Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Anjuan Gong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhen Feng
- Center of Disorders of Consciousness Rehabilitation, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Abstract
Over the past few decades, the importance of sleep has become increasingly recognized for many physiologic functions, including cognition. Many studies have reported the deleterious effect of sleep loss or sleep disruption on cognitive performance. Beyond ensuring adequate sleep quality and duration, discovering methods to enhance sleep to augment its restorative effects is important to improve learning in many populations, such as the military, students, age-related cognitive decline, and cognitive disorders.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Arai N, Nakanishi T, Nakajima S, Li X, Wada M, Daskalakis ZJ, Goodman MS, Blumberger DM, Mimura M, Noda Y. Insights of neurophysiology on unconscious state using combined transcranial magnetic stimulation and electroencephalography: A systematic review. Neurosci Biobehav Rev 2021; 131:293-312. [PMID: 34555384 DOI: 10.1016/j.neubiorev.2021.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 02/02/2023]
Abstract
Unconscious state has been investigated in numerous studies so far, but pathophysiology of this state is not fully understood. Recently, combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been developed to allow for non-invasive assessment of neurophysiology in the cerebral cortex. We conducted a systematic literature search for TMS-EEG studies on human unconscious state using PubMed with cross-reference and manual searches. The initial search yielded 137 articles, and 19 of them were identified as relevant, including one article found by manual search. This review included 10 studies for unresponsive wakefulness syndrome (UWS), 9 for minimally conscious states (MCS), 5 for medication-induced unconscious states, and 6 for natural non-rapid eye movement states. These studies analyzed TMS-evoked potential to calculate perturbational complexity index (PCI) and OFF-periods. In particular, PCI was found to be a potentially useful marker to differentiate between UWS and MCS. This review demonstrated that TMS-EEG could represent a promising neuroscientific tool to investigate various unconscious states. Further TMS-EEG research may help elucidate the neural basis of unconscious state.
Collapse
Affiliation(s)
- Naohiro Arai
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Tomoya Nakanishi
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Xuemei Li
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Masataka Wada
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | | | - Michelle S Goodman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Masaru Mimura
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Fehér KD, Wunderlin M, Maier JG, Hertenstein E, Schneider CL, Mikutta C, Züst MA, Klöppel S, Nissen C. Shaping the slow waves of sleep: A systematic and integrative review of sleep slow wave modulation in humans using non-invasive brain stimulation. Sleep Med Rev 2021; 58:101438. [PMID: 33582581 DOI: 10.1016/j.smrv.2021.101438] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
The experimental study of electroencephalographic slow wave sleep (SWS) stretches over more than half a century and has corroborated its importance for basic physiological processes, such as brain plasticity, metabolism and immune system functioning. Alterations of SWS in aging or pathological conditions suggest that modulating SWS might constitute a window for clinically relevant interventions. This work provides a systematic and integrative review of SWS modulation through non-invasive brain stimulation in humans. A literature search using PubMed, conducted in May 2020, identified 3220 studies, of which 82 fulfilled inclusion criteria. Three approaches have been adopted to modulate the macro- and microstructure of SWS, namely auditory, transcranial electrical and transcranial magnetic stimulation. Our current knowledge about the modulatory mechanisms, the space of stimulation parameters and the physiological and behavioral effects are reported and evaluated. The integration of findings suggests that sleep slow wave modulation bears the potential to promote our understanding of the functions of SWS and to develop new treatments for conditions of disrupted SWS.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Jonathan G Maier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Privatklinik Meiringen, Meiringen, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland.
| |
Collapse
|
5
|
Neurostimulation techniques to enhance sleep and improve cognition in aging. Neurobiol Dis 2020; 141:104865. [DOI: 10.1016/j.nbd.2020.104865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
|
6
|
Abstract
Given the critical role of sleep, particularly sleep slow oscillations, sleep spindles, and hippocampal sharp wave ripples, in memory consolidation, sleep enhancement represents a key opportunity to improve cognitive performance. Techniques such as transcranial electrical and magnetic stimulation and acoustic stimulation can enhance slow oscillations and sleep spindles and potentially improve memory. Targeted memory reactivation in sleep may enhance or stabilize memory consolidation. Each technique has technical considerations that may limit its broader clinical application. Therefore, neurostimulation to enhance sleep quality, in particular sleep slow oscillations, has the potential for improving sleep-related memory consolidation in healthy and clinical populations.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Juxtaposing the real-time unfolding of subjective experience and ERP neuromarker dynamics. Conscious Cogn 2017; 54:3-19. [DOI: 10.1016/j.concog.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
|