1
|
Malyshevskaya A, Miklashevsky A, Fischer MH, Scheepers C, Shtyrov Y, Myachykov A. Keeping track of time: Horizontal spatial biases for hours, days, and months. Mem Cognit 2024; 52:894-908. [PMID: 38153647 PMCID: PMC11111500 DOI: 10.3758/s13421-023-01508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
In many Western cultures, the processing of temporal words related to the past and to the future is associated with left and right space, respectively - a phenomenon known as the horizontal Mental Time Line (MTL). While this mapping is apparently quite ubiquitous, its regularity and consistency across different types of temporal concepts remain to be determined. Moreover, it is unclear whether such spatial mappings are an essential and early constituent of concept activation. In the present study, we used words denoting time units at different scales (hours of the day, days of the week, months of the year) associated with either left space (e.g., 9 a.m., Monday, February) or right space (e.g., 8 p.m., Saturday, November) as cues in a line bisection task. Fifty-seven healthy adults listened to temporal words and then moved a mouse cursor to the perceived midpoint of a horizontally presented line. We measured movement trajectories, initial line intersection coordinates, and final bisection response coordinates. We found movement trajectory displacements for left- vs. right-biasing hour and day cues. Initial line intersections were biased specifically by month cues, while final bisection responses were biased specifically by hour cues. Our findings offer general support to the notion of horizontal space-time associations and suggest further investigation of the exact chronometry and strength of this association across individual time units.
Collapse
Affiliation(s)
- Anastasia Malyshevskaya
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476, Potsdam-Golm, Germany.
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Krivokolenniy Pereulok 3, Entrance 2, Moscow, Russian Federation, 101000.
| | - Alex Miklashevsky
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476, Potsdam-Golm, Germany
| | - Martin H Fischer
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476, Potsdam-Golm, Germany
| | - Christoph Scheepers
- School of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Institute for Clinical Medicine Aarhus University, Universitetsbyen 3, bldg 1719, 8000, Aarhus, Denmark
| | - Andriy Myachykov
- Department of Psychology, Northumbria University, Northumberland Building, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
2
|
Michirev A, Kühne K, Lindemann O, Fischer MH, Raab M. How to not induce SNAs: The insufficiency of directional force. PLoS One 2023; 18:e0288038. [PMID: 37384780 DOI: 10.1371/journal.pone.0288038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
People respond faster to smaller numbers in their left space and to larger numbers in their right space. Here we argue that movements in space contribute to the formation of spatial-numerical associations (SNAs). We studied the impact of continuous isometric forces along the horizontal or vertical cardinal axes on SNAs while participants performed random number production and arithmetic verification tasks. Our results suggest that such isometric directional force do not suffice to induce SNAs.
Collapse
Affiliation(s)
- A Michirev
- Department of Performance Psychology, German Sport University Cologne, Cologne, Germany
| | - K Kühne
- Division of Cognitive Sciences, University of Potsdam, Potsdam, Germany
| | - O Lindemann
- Department of Psychology, Education and Child Studies Erasmus University, Rotterdam, Netherlands
| | - M H Fischer
- Division of Cognitive Sciences, University of Potsdam, Potsdam, Germany
| | - M Raab
- Department of Performance Psychology, German Sport University Cologne, Cologne, Germany
- School of Applied Sciences, London South Bank University, London, United Kingdom
| |
Collapse
|
3
|
How Memory Counts in Mathematical Development. J Cogn 2023; 6:1. [PMID: 36644493 PMCID: PMC9818043 DOI: 10.5334/joc.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/05/2022] [Indexed: 01/09/2023] Open
Abstract
Memory has been well-established as a predictor of mathematics achievement in child development. Nevertheless, empirical evidence remains elusive on the unique role of the different forms of memory and their specific mechanisms as predictors of mathematics development. Therefore, in this study, the role of visuospatial short-term memory, visuospatial working memory, verbal short-term memory, and verbal long-term memory was investigated at three key stages of the development of mathematics (5-6 years, 6-7 years, 7-8 years), as well as their interactions across development. The relation between the different memory types and informal and formal mathematics was also studied. The findings of this study provide empirical support for a shift in the relation between different memory types and mathematics achievement over development with: 1) visuospatial short-term memory predicting informal mathematics achievement at the age of 5-6 years; 2) visuospatial working memory predicting informal and formal mathematics achievement at the age of 6-7 years; and 3) verbal short-term memory predicting formal mathematics achievement at the age of 7-8 years. These shifts clearly appear consistent with children's mathematics curriculum content over time and the requirements of mathematics acquisition at specific stages in development. With these findings, the unique role of various forms of memory in the development of mathematics and the timeframe in which they play a crucial part is highlighted, which should be taken into consideration for future research and possible intervention studies in children's mathematics achievement.
Collapse
|
4
|
Santana Espitia AC, Otálora Y, Taborda Osorio H. Aprendizaje del conteo y los números naturales en preescolar: una revisión sistemática de la literatura. UNIVERSITAS PSYCHOLOGICA 2022. [DOI: 10.11144/javeriana.upsy21.acnn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aprender a contar cantidades discretas de forma exacta constituye uno de los primeros hitos del desarrollo del conocimiento matemático infantil. En los últimos años, ha habido un extenso debate en torno a cómo ocurre este proceso de aprendizaje en preescolar. La actual investigación tuvo como objetivo conocer las temáticas y preguntas de investigación generales desarrolladas en los últimos cinco años en cuanto al aprendizaje del conteo y los números naturales en preescolar. Para ello, se realizó una revisión sistemática en la que se hizo una indagación en las bases de datos ScienceDirect, EBSCO, Web of Science, SpringerLink, JSTOR y Sage. Se obtuvieron 98 artículos de investigación que fueron examinados mediante análisis de conglomerados y mapas jerárquicos a través de NVIVO 11.0. Se encontraron cuatro núcleos temáticos (Ideas sobre los procesos cognitivos implicados en la comprensión del número, Representación de magnitudes numéricas, Intervenciones para favorecer el desarrollo de habilidades matemáticas y Aspectos estructurales del número), que muestran el panorama actual de investigación sobre aprendizaje del conteo. Los resultados de este estudio son importantes para delimitar posibles programas futuros de investigación, y pueden ser usados por docentes como insumo para enriquecer los ambientes de aprendizaje de sus aulas de clase.
Collapse
|
5
|
Abstract
The space-time interaction suggests a left-to-right directionality in the mind's representation of elapsing time. However, studies showing a possible vertical time representation are scarce and contradictory. In Experiment 1, 32 participants had to judge the duration (200, 300, 500, or 600 ms) of the target stimulus that appeared at the top, centre, or bottom of the screen, compared with a reference stimulus (400 ms) that always appeared in the centre of the screen. In Experiment 2, 32 participants were administered the same procedure, but the reference stimulus appeared at the top, centre, or bottom of the screen and the target stimulus was fixed in the centre location. In both experiments, a space-time interaction was found with an association between short durations and bottom response key as well as between long durations and top key. The evidence of a vertical mental timeline was further confirmed by the distance effect with a lower level of performance for durations close to that of the reference stimulus. The results suggest a bottom-to-top mapping of time representation, more in line with the metaphor "more is up."
Collapse
Affiliation(s)
- Alessia Beracci
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Marissa Lynn Rescott
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Vincenzo Natale
- Department of Psychology "Renzo Canestrari", University of Bologna, Italy
| | - Marco Fabbri
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
6
|
Beracci A, Santiago J, Fabbri M. The categorical use of a continuous time representation. PSYCHOLOGICAL RESEARCH 2021; 86:1015-1028. [PMID: 34291309 PMCID: PMC9090696 DOI: 10.1007/s00426-021-01553-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022]
Abstract
The abstract concept of time is mentally represented as a spatially oriented line, with the past associated with the left space and the future associated with the right. Although the line is supposed to be continuous, most available evidence is also consistent with a categorical representation that only discriminates between past and future. The aim of the present study was to test the continuous or categorical nature of the mental timeline. Italian participants judged the temporal reference of 20 temporal expressions by pressing keys on either the left or the right. In Experiment 1 (N = 32), all words were presented at the center of the screen. In Experiment 2 (N = 32), each word was presented on the screen in a central, left, or right position. In Experiment 3 (N = 32), all text was mirror-reversed. In all experiments, participants were asked to place the 20 temporal expressions on a 10-cm line. The results showed a clear Spatial–TEmporal Association of Response Codes (STEARC) effect which did not vary in strength depending on the location of the temporal expressions on the line. However, there was also a clear Distance effect: latencies were slower for words that were closer to the present than further away. We conclude that the mental timeline is a continuous representation that can be used in a categorical way when an explicit past vs. future discrimination is required by the task.
Collapse
Affiliation(s)
- Alessia Beracci
- Department of Psychology, University of Campania Luigi Vanvitelli, Viale Ellittico 31, 81100, Caserta, CE, Italy.
| | - Julio Santiago
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Marco Fabbri
- Department of Psychology, University of Campania Luigi Vanvitelli, Viale Ellittico 31, 81100, Caserta, CE, Italy
| |
Collapse
|
7
|
Fischer U, Huber S, Nuerk HC, Cress U, Moeller K. Spatial Presentations, but Not Response Formats Influence Spatial-Numerical Associations in Adults. Front Psychol 2019; 9:2608. [PMID: 30619009 PMCID: PMC6305423 DOI: 10.3389/fpsyg.2018.02608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/04/2018] [Indexed: 12/03/2022] Open
Abstract
According to theories of embodied numerosity, processing of numerical magnitude is anchored in bodily experiences. In particular, spatial representations of number interact with movement in physical space, but it is still unclear whether the extent of the movement is relevant for this interaction. In this study, we compared spatial-numerical associations over response movements of differing spatial expansion. We expected spatial-numerical effects to increase with the extent of physical response movements. In addition, we hypothesized that these effects should be influenced by whether or not a spatial representation of numbers was presented. Adult participants performed two tasks: a magnitude classification (comparing numbers to the fixed standard 5), from which we calculated the Spatial Numerical Association of Response Codes (SNARC) effect; and a magnitude comparison task (comparing two numbers against each other), from which we calculated a relative numerical congruity effect (NCE), which describes that when two relatively small numbers are compared, responses to the smaller number are faster than responses to the larger number; and vice versa for large numbers. A SNARC effect was observed across all conditions and was not influenced by response movement extent but increased when a number line was presented. In contrast, an NCE was only observed when no number line was presented. This suggests that the SNARC effect and the NCE reflect two different processes. The SNARC effect seems to represent a highly automated classification of numbers as large or small, which is further emphasized by the presentation of a number line. In contrast, the NCE likely results from participants not only classifying numbers as small or large, but also processing their relative size within the relevant section of their mental number line representation. An additional external presentation of a number line might interfere with this process, resulting in overall slower responses. This study follows up on previous spatial-numerical training studies and has implications for future spatial-numerical trainings. Specifically, similar studies with children showed contrasting results, in that response format but not number line presentation influenced spatial-numerical associations. Accordingly, during development, the relative relevance of physical experiences and presentation format for spatial-numerical associations might change.
Collapse
Affiliation(s)
- Ursula Fischer
- Department of Sport Science, University of Konstanz, Konstanz, Germany.,Thurgau University of Teacher Education, Kreuzlingen, Switzerland.,Leibniz-Institut für Wissensmedien, Tübingen, Germany
| | - Stefan Huber
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
| | - Hans-Christoph Nuerk
- Leibniz-Institut für Wissensmedien, Tübingen, Germany.,Department of Psychology, University of Tuebingen, Tübingen, Germany
| | - Ulrike Cress
- Leibniz-Institut für Wissensmedien, Tübingen, Germany.,Department of Psychology, University of Tuebingen, Tübingen, Germany
| | - Korbinian Moeller
- Leibniz-Institut für Wissensmedien, Tübingen, Germany.,Department of Psychology, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
8
|
Hohol M, Wołoszyn K, Nuerk HC, Cipora K. A large-scale survey on finger counting routines, their temporal stability and flexibility in educated adults. PeerJ 2018; 6:e5878. [PMID: 30402357 PMCID: PMC6215439 DOI: 10.7717/peerj.5878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022] Open
Abstract
A strong link between bodily activity and number processing has been established in recent years. Although numerous observations indicate that adults use finger counting (FC) in various contexts of everyday life for different purposes, existing knowledge of FC routines and their use is still limited. In particular, it remains unknown how stable the (default) FC habits are over time and how flexible they can be. To investigate these questions, 380 Polish participants completed a questionnaire on their FC routines, the stability of these routines, and the context of FC usage, preceded by the request to count on their fingers from 1 to 10. Next, the test-retest stability of FC habits was examined in 84 participants 2 months following the first session. To the best of our knowledge, such a study design has been adopted for the first time. The results indicate that default FC routines of the majority of participants (75%) are relatively stable over time. At the same time, FC routines can flexibly adapt according to the situation (e.g., when holding an object). As regards prevalence, almost all participants, in line with previous findings on Western individuals, declared starting from the closed palm and extending consecutive fingers. Furthermore, we observed relations between FC preferences and handedness (more left-handers start from the left hand) and that actual finger use is still widespread in healthy adults for a variety of activities (the most prevalent uses of FC are listing elements, presenting arguments and plans, and calendar calculations). In sum, the results show the practical relevance of FC in adulthood, the relative stability of preferences over time along with flexible adaptation to a current situation, as well as an association of FC routines with handedness. Taken together our results suggest that FC is the phenomenon, which is moderated or mediated by multiple embodied factors.
Collapse
Affiliation(s)
- Mateusz Hohol
- Copernicus Center for Interdisciplinary Studies, Jagiellonian University, Cracow, Poland
- Section of Cognitive Science, Institute of Philosophy and Sociology, Polish Academy of Science, Warsaw, Poland
| | - Kinga Wołoszyn
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Cracow, Poland
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Leibnitz-Institut für Wissenmedien, Tuebingen, Germany
| | - Krzysztof Cipora
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
9
|
Toomarian EY, Hubbard EM. On the genesis of spatial-numerical associations: Evolutionary and cultural factors co-construct the mental number line. Neurosci Biobehav Rev 2018; 90:184-199. [PMID: 29684402 PMCID: PMC5993626 DOI: 10.1016/j.neubiorev.2018.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/29/2023]
Abstract
Mapping numbers onto space is a common cognitive representation that has been explored in both behavioral and neuroimaging contexts. Empirical work probing the diverse nature of these spatial-numerical associations (SNAs) has led researchers to question 1) how the human brain links numbers with space, and 2) whether this link is biologically vs. culturally determined. We review the existing literature on the development of SNAs and situate that empirical work within cognitive and neuroscientific theoretical frameworks. We propose that an evolutionarily-ancient frontal-parietal circuit broadly tuned to multiple magnitude dimensions provides the phylogenetic substrate for SNAs, while enculturation and sensorimotor experience shape their specific profiles. We then use this perspective to discuss educational implications and highlight promising avenues for future research.
Collapse
Affiliation(s)
- Elizabeth Y Toomarian
- Department of Educational Psychology, University of Wisconsin- Madison, 1025 W. Johnson St. Madison, WI, 53706, United States of America.
| | - Edward M Hubbard
- Department of Educational Psychology, University of Wisconsin- Madison, 1025 W. Johnson St. Madison, WI, 53706, United States of America
| |
Collapse
|
10
|
Morrissey K, Hallett D, Wynes R, Kang J, Han M. Finger-counting habits, not finger movements, predict simple arithmetic problem solving. PSYCHOLOGICAL RESEARCH 2018; 84:140-151. [PMID: 29473110 DOI: 10.1007/s00426-018-0990-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/12/2018] [Indexed: 11/26/2022]
Abstract
Previous research in embodied mathematical cognition has found differences between those who start counting on their left hand and those who start counting on the right hand. However, if starting hand is a finger-embodied effect, then finger-specific interference may affect these differences between left and right starters. Furthermore, cultures that demonstrate different finger-counting habits may also be differently affected by this interference. In the current study, a total of 66 Canadians and 60 Chinese participants completed a single/dual-task paradigm and were also assessed on their starting hand for counting. The primary task was to verbally answer simple arithmetic problems, while the dual task was to either sequentially tap their fingers or their foot. Contrary to predictions, a specific finger-movement interference pattern that had previously been reported was not evident in this study, despite a much larger sample. Nevertheless, Canadians left starters outperformed right starters for every operation type, which may be further evidence of individual differences in the lateralization of arithmetic processes. Derived from a combination of a replication, a conceptual replication, and a cross-cultural comparison, this investigation suggests that embodied effects in the published literature are in need of both independent replication as well as investigation of individual differences. This study also further validates the differences between left and right starters, and suggests that more research is needed to understand the influence of embodied cognition on mathematical understanding.
Collapse
Affiliation(s)
- Kyle Morrissey
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | - Darcy Hallett
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Rutanya Wynes
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Jingmei Kang
- School of Psychology, Northeast Normal University, Changchun, China
| | - Ming Han
- School of Psychology, Northeast Normal University, Changchun, China
| |
Collapse
|