1
|
Giersiepen M, Schütz-Bosbach S, Kaiser J. My choice, my actions: self-determination, not instrumental value of outcomes enhances outcome monitoring during learning. Cereb Cortex 2024; 34:bhae325. [PMID: 39118215 DOI: 10.1093/cercor/bhae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Freedom of choice enhances our sense of agency. During goal-directed behavior, the freedom to choose between different response options increases the neural processing of positive and negative feedback, indicating enhanced outcome monitoring under conditions of high agency experience. However, it is unclear whether this enhancement is predominantly driven by an increased salience of self- compared to externally determined action outcomes or whether differences in the perceived instrumental value of outcomes contribute to outcome monitoring in goal-directed tasks. To test this, we recorded electroencephalography while participants performed a reinforcement learning task involving free choices, action-relevant forced choices, and action-irrelevant forced choices. We observed larger midfrontal theta power and N100 amplitudes for feedback following free choices compared with action-relevant and action-irrelevant forced choices. In addition, a Reward Positivity was only present for free but not forced choice outcomes. Crucially, our results indicate that enhanced outcome processing is not driven by the relevance of outcomes for future actions but rather stems from the association of outcomes with recent self-determined choice. Our findings highlight the pivotal role of self-determination in tracking the consequences of our actions and contribute to an understanding of the cognitive processes underlying the choice-induced facilitation in outcome monitoring.
Collapse
Affiliation(s)
- Maren Giersiepen
- General and Experimental Psychology, Ludwig-Maximilians-University, Leopoldstr. 13, D-80802 Munich, Germany
| | - Simone Schütz-Bosbach
- General and Experimental Psychology, Ludwig-Maximilians-University, Leopoldstr. 13, D-80802 Munich, Germany
| | - Jakob Kaiser
- General and Experimental Psychology, Ludwig-Maximilians-University, Leopoldstr. 13, D-80802 Munich, Germany
- Faculty of Electrical Engineering and Information Technology, Technical University Vienna, Autonomous Systems Lab, Gusshausstr. 27, 1040 Vienna, Austria
| |
Collapse
|
2
|
Gammeri R, Salatino A, Pyasik M, Cirillo E, Zavattaro C, Serra H, Pia L, Roberts DR, Berti A, Ricci R. Modulation of vestibular input by short-term head-down bed rest affects somatosensory perception: implications for space missions. Front Neural Circuits 2023; 17:1197278. [PMID: 37529715 PMCID: PMC10390228 DOI: 10.3389/fncir.2023.1197278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction On Earth, self-produced somatosensory stimuli are typically perceived as less intense than externally generated stimuli of the same intensity, a phenomenon referred to as somatosensory attenuation (SA). Although this phenomenon arises from the integration of multisensory signals, the specific contribution of the vestibular system and the sense of gravity to somatosensory cognition underlying distinction between self-generated and externally generated sensations remains largely unknown. Here, we investigated whether temporary modulation of the gravitational input by head-down tilt bed rest (HDBR)-a well-known Earth-based analog of microgravity-might significantly affect somatosensory perception of self- and externally generated stimuli. Methods In this study, 40 healthy participants were tested using short-term HDBR. Participants received a total of 40 non-painful self- and others generated electrical stimuli (20 self- and 20 other-generated stimuli) in an upright and HDBR position while blindfolded. After each stimulus, they were asked to rate the perceived intensity of the stimulation on a Likert scale. Results Somatosensory stimulations were perceived as significantly less intense during HDBR compared to upright position, regardless of the agent administering the stimulus. In addition, the magnitude of SA in upright position was negatively correlated with the participants' somatosensory threshold. Based on the direction of SA in the upright position, participants were divided in two subgroups. In the subgroup experiencing SA, the intensity rating of stimulations generated by others decreased significantly during HDBR, leading to the disappearance of the phenomenon of SA. In the second subgroup, on the other hand, reversed SA was not affected by HDBR. Conclusion Modulation of the gravitational input by HDBR produced underestimation of somatosensory stimuli. Furthermore, in participants experiencing SA, the reduction of vestibular inputs by HDBR led to the disappearance of the SA phenomenon. These findings provide new insights into the role of the gravitational input in somatosensory perception and have important implications for astronauts who are exposed to weightlessness during space missions.
Collapse
Affiliation(s)
- Roberto Gammeri
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Adriana Salatino
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Maria Pyasik
- SpAtial, Motor and Bodily Awareness (SAMBA) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Emanuele Cirillo
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Claudio Zavattaro
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Hilary Serra
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Lorenzo Pia
- SpAtial, Motor and Bodily Awareness (SAMBA) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Donna R. Roberts
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Anna Berti
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
- SpAtial, Motor and Bodily Awareness (SAMBA) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Raffaella Ricci
- Space, Attention and Action (SAN) Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Social, affective, and non-motoric bodily cues to the Sense of Agency: A systematic review of the experience of control. Neurosci Biobehav Rev 2022; 142:104900. [DOI: 10.1016/j.neubiorev.2022.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
4
|
Reddy NN. Non-motor cues do not generate the perception of self-agency: A critique of cue-integration. Conscious Cogn 2022; 103:103359. [PMID: 35687981 DOI: 10.1016/j.concog.2022.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/24/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
How does one know that (s)he is the causal agent of their motor actions? Earlier theories of sense of agency have attributed the capacity for perception of self-agency to the comparator process of the motor-control/action system. However, with the advent of the findings implying a role of non-motor cues (like affective states, beliefs, primed concepts, and social instructions or previews of actions) in the sense of agency literature, the perception of self-agency is hypothesized to be generated even by non-motor cues (based on their relative reliability or weighting estimate); and, this theory is come to be known as the cue-integration of sense of agency. However, the cue-integration theory motivates skepticism about whether it is falsifiable and whether it is plausible that non-motor cues that are sensorily unrelated to typical sensory processes of self-agency have the capacity to produce a perception of self-agency. To substantiate this skepticism, I critically analyze the experimental operationalizations of cue-integration-with the (classic) vicarious agency experiment as a case study-to show that (1) the participants in these experiments are ambiguous about their causal agency over motor actions, (2) thus, these participants resort to reports of self-agency as heuristic judgments (under ambiguity) rather than due to cue-integration per se, and (3) there might not have occurred cue-integration based self-agency reports if these experimental operationalizations had eliminated ambiguity about the causal agency. Thus, I conclude that the reports of self-agency (observed in typical non-motor cues based cue-integration experiments) are not instances of perceptual effect-that are hypothesized to be produced by non-motor cues-but are of heuristic judgment effect.
Collapse
|
5
|
Kaiser J, Buciuman M, Gigl S, Gentsch A, Schütz-Bosbach S. The Interplay Between Affective Processing and Sense of Agency During Action Regulation: A Review. Front Psychol 2021; 12:716220. [PMID: 34603140 PMCID: PMC8481378 DOI: 10.3389/fpsyg.2021.716220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
Sense of agency is the feeling of being in control of one's actions and their perceivable effects. Most previous research identified cognitive or sensory determinants of agency experience. However, it has been proposed that sense of agency is also bound to the processing of affective information. For example, during goal-directed actions or instrumental learning we often rely on positive feedback (e.g., rewards) or negative feedback (e.g., error messages) to determine our level of control over the current task. Nevertheless, we still lack a scientific model which adequately explains the relation between affective processing and sense of agency. In this article, we review current empirical findings on how affective information modulates agency experience, and, conversely, how sense of agency changes the processing of affective action outcomes. Furthermore, we discuss in how far agency-related changes in affective processing might influence the ability to enact cognitive control and action regulation during goal-directed behavior. A preliminary model is presented for describing the interplay between sense of agency, affective processing, and action regulation. We propose that affective processing could play a role in mediating the influence between subjective sense of agency and the objective ability to regulate one's behavior. Thus, determining the interrelation between affective processing and sense of agency will help us to understand the potential mechanistic basis of agency experience, as well as its functional significance for goal-directed behavior.
Collapse
Affiliation(s)
- Jakob Kaiser
- LMU Munich, Department of Psychology, General and Experimental Psychology, Munich, Germany
| | | | | | | | | |
Collapse
|
6
|
Paraskevoudi N, SanMiguel I. Self-generation and sound intensity interactively modulate perceptual bias, but not perceptual sensitivity. Sci Rep 2021; 11:17103. [PMID: 34429453 PMCID: PMC8385100 DOI: 10.1038/s41598-021-96346-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
The ability to distinguish self-generated stimuli from those caused by external sources is critical for all behaving organisms. Although many studies point to a sensory attenuation of self-generated stimuli, recent evidence suggests that motor actions can result in either attenuated or enhanced perceptual processing depending on the environmental context (i.e., stimulus intensity). The present study employed 2-AFC sound detection and loudness discrimination tasks to test whether sound source (self- or externally-generated) and stimulus intensity (supra- or near-threshold) interactively modulate detection ability and loudness perception. Self-generation did not affect detection and discrimination sensitivity (i.e., detection thresholds and Just Noticeable Difference, respectively). However, in the discrimination task, we observed a significant interaction between self-generation and intensity on perceptual bias (i.e. Point of Subjective Equality). Supra-threshold self-generated sounds were perceived softer than externally-generated ones, while at near-threshold intensities self-generated sounds were perceived louder than externally-generated ones. Our findings provide empirical support to recent theories on how predictions and signal intensity modulate perceptual processing, pointing to interactive effects of intensity and self-generation that seem to be driven by a biased estimate of perceived loudness, rather by changes in detection and discrimination sensitivity.
Collapse
Affiliation(s)
- Nadia Paraskevoudi
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, P. Vall d'Hebron 171, 08035, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Iria SanMiguel
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, P. Vall d'Hebron 171, 08035, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, Barcelona, Spain. .,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|