1
|
Wang S, Ju D, Zeng X. Mechanisms and Clinical Implications of Human Gut Microbiota-Drug Interactions in the Precision Medicine Era. Biomedicines 2024; 12:194. [PMID: 38255298 PMCID: PMC10813426 DOI: 10.3390/biomedicines12010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
The human gut microbiota, comprising trillions of microorganisms residing in the gastrointestinal tract, has emerged as a pivotal player in modulating various aspects of human health and disease. Recent research has shed light on the intricate relationship between the gut microbiota and pharmaceuticals, uncovering profound implications for drug metabolism, efficacy, and safety. This review depicted the landscape of molecular mechanisms and clinical implications of dynamic human gut Microbiota-Drug Interactions (MDI), with an emphasis on the impact of MDI on drug responses and individual variations. This review also discussed the therapeutic potential of modulating the gut microbiota or harnessing its metabolic capabilities to optimize clinical treatments and advance personalized medicine, as well as the challenges and future directions in this emerging field.
Collapse
Affiliation(s)
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| |
Collapse
|
2
|
Stefansson M, Bladh O, Flink O, Skolling O, Ekre HP, Rombo L, Engstrand L, Ursing J. Safety and tolerability of frozen, capsulized autologous faecal microbiota transplantation. A randomized double blinded phase I clinical trial. PLoS One 2023; 18:e0292132. [PMID: 37756322 PMCID: PMC10529588 DOI: 10.1371/journal.pone.0292132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is recommended treatment for recurrent Clostridioides difficile infection and is studied as a potential modifier of other gastrointestinal and systemic disorders. Autologous FMT limits the potential risks of donor transplant material and enables prophylactic treatment. Capsulized FMT is convenient and accessible, but safety data are lacking. AIMS To describe safety and tolerability of capsules containing autologous FMT, compared to placebo, in healthy volunteers treated with antibiotics. METHOD Healthy volunteers without antibiotic exposure during the past three months, that had a negative Clostridioides difficile stool sample, were recruited. Study persons donated faeces for production of capsules containing autologous microbiota. They were then given Clindamycin for seven days to disrupt the intestinal microbiota, which was followed by a two-day washout. Study persons were then randomized (1:1) to unsupervised treatment with autologous faecal matter or placebo, with two capsules twice daily for five days. A standardized questionnaire about side effects and tolerability, daily until day 28, and on days 60 and 180, was completed. RESULTS Twenty-four study persons were included, all completed the treatment. One person from the placebo and FMT groups each, were lost to follow up from days 21 and 60, respectively. No study person experienced serious side effects, but severe fatigue was reported during the antibiotic period (n = 2). Reported side effects were mild to moderate and there were no significant differences between the groups. Reported general and intestinal health improved significantly and similarly in both groups after the antibiotic treatment. Time to normalized intestinal habits were 17 and 19 days from study start in the placebo group and the FMT group, respectively (p = 0.8). CONCLUSION Capsulized frozen autologous faecal microbiota transplantation was safe and well tolerated but did not affect time to normalized intestinal habits compared to placebo. TRIAL REGISTRATION EudraCT 2017-002418-30.
Collapse
Affiliation(s)
- Måns Stefansson
- Centre for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden
- Department of Clinical Sciences Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Oscar Bladh
- Department of Clinical Sciences Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Danderyd Hospital, Stockholm, Sweden
| | | | | | | | - Lars Rombo
- Centre for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Johan Ursing
- Department of Clinical Sciences Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Hoelz H, Heetmeyer J, Tsakmaklis A, Hiergeist A, Siebert K, De Zen F, Häcker D, Metwaly A, Neuhaus K, Gessner A, Vehreschild MJGT, Haller D, Schwerd T. Is Autologous Fecal Microbiota Transfer after Exclusive Enteral Nutrition in Pediatric Crohn’s Disease Patients Rational and Feasible? Data from a Feasibility Test. Nutrients 2023; 15:nu15071742. [PMID: 37049583 PMCID: PMC10096730 DOI: 10.3390/nu15071742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Exclusive enteral nutrition (EEN) is a highly effective therapy for remission induction in pediatric Crohn’s disease (CD), but relapse rates after return to a regular diet are high. Autologous fecal microbiota transfer (FMT) using stool collected during EEN-induced clinical remission might represent a novel approach to maintaining the benefits of EEN. Methods: Pediatric CD patients provided fecal material at home, which was shipped at 4 °C to an FMT laboratory for FMT capsule generation and extensive pathogen safety screening. The microbial community composition of samples taken before and after shipment and after encapsulation was characterized using 16S rRNA amplicon sequencing. Results: Seven pediatric patients provided fecal material for nine test runs after at least three weeks of nutritional therapy. FMT capsules were successfully generated in 6/8 deliveries, but stool weight and consistency varied widely. Transport and processing of fecal material into FMT capsules did not fundamentally change microbial composition, but microbial richness was <30 genera in 3/9 samples. Stool safety screening was positive for potential pathogens or drug resistance genes in 8/9 test runs. Conclusions: A high pathogen burden, low-diversity microbiota, and practical deficiencies of EEN-conditioned fecal material might render autologous capsule-FMT an unsuitable approach as maintenance therapy for pediatric CD patients.
Collapse
Affiliation(s)
- Hannes Hoelz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Jeannine Heetmeyer
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Anastasia Tsakmaklis
- Clinical Microbiome Research Group, Department of Internal Medicine I, University Hospital of Cologne, 50931 Cologne, Germany
| | - Andreas Hiergeist
- Institute for Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Kolja Siebert
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Federica De Zen
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Deborah Häcker
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Klaus Neuhaus
- ZIEL-Institute for Food and Health, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - André Gessner
- Institute for Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Maria J. G. T. Vehreschild
- Clinical Microbiome Research Group, Department of Internal Medicine I, University Hospital of Cologne, 50931 Cologne, Germany
- Section of Infectious Diseases, Department of Internal Medicine II, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
- ZIEL-Institute for Food and Health, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| |
Collapse
|